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Why are dynamics important?

I The motivation for using dynamics is usually external validity:
we want to simulate counterfactuals involving changes not observed
in the data.

I For example, often the data feature short-run price variation,
but we are interested in responses to long-run changes.

I Thinking back to Hendel and Nevo (2006), consumers may purchase
extra laundry detergent during sales and then store it. Static elasticities
are biased away from zero vs. long-run elasticities.

I Looking ahead to Scott (2013), farmers may respond little to
year-to-year variation in prices when clearing land for crops, but might
respond more to a long-run price increase. Static elasticities are biased
toward zero vs. long-run elasticities.
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Why are dynamics difficult?

I The computational burden of solving dynamic problems blows up with
the state space. Consequently, much of the literature has been
motivated by avoiding or alleviating the burden of having to solve the
dynamic model.

I Other issues:
I serially correlated unobservables
I unobserved heterogeneity
I solving for equilibria, multiplicity (when we get to dynamic games)

6 / 55



Why not two-stage models?

I Two-stage models are big simplifications which are only defensible for
stable markets. They don’t make sense for empirical applications
where the identifying variation comes from changes over time.
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Rust (1987)

"Optimal Replacement of GMC Bus Engines:
An Empirical Model of Harold Zurcher"

John Rust (1987)
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Rust (1987)

The “application”

I The decision maker decides whether replace bus engines or not,
minimizing the expected discounted cost

I The trade-off: engine replacement is costly, but with increased use,
the probability of a very costly breakdown increases

I Single agent setting: prices are exogenous, not worried about
externalities across buses
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Rust (1987)

Model, part I

I state variable: xt is the bus engine’s mileage
I For computational purposes, Rust discretizes the state space into 90

intervals.

I Action it ∈ {0, 1}, where
I it = 1 - replace the engine,
I it = 0 - keep the engine and perform normal maintenance.
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Rust (1987)

Model, part II

I per-period profit function:

u (it , xt , θ1) =

{
−c (xt , θ1) + εt (0) if it = 0
− (RC − c (0, θ1)) + εt (1) if it = 1

where
I c (xt , θ1) - regular maintenance costs (including expected breakdown

costs),
I RC - the net costs of replacing an engine,
I ε - payoff shocks.

I xt is observable to both agent and econometrician,
but ε is only observable to the agent.

I ε is necessary for a coherent model, for sometimes we observe the
agent making different decisions for the same value of x .
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Rust (1987)

Model, part III

I Can define value function using Bellman equation:

Vθ (xt , εt) = max
i

[u (i , xt , θ) + βEVθ (xt , εt , it)]

where

EVθ (xt , εt , it) =

ˆ
Vθ (y , η) p (dy , dη|xt , εt , it , θ2, θ3)
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Rust (1987)

Parameters

I θ1 - parameters of cost function
I θ2 - parameters of distribution of ε (these will be normalized away)
I θ3 - parameters of x -state transition function
I RC - replacement cost
I discount factor β will be imputed
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Rust (1987)

Conditional Independence

Conditional Independence Assumption
The transition density of the controlled process {xt , εt} factors as:

p (xt+1, εt+1|xt , εt , it , θ2, θ3) = q (εt+1|xt+1, θ2) p (xt+1|xt , it , θ3)

I CI assumption is very powerful: it means we don’t have to treat εt as
a state variable, which would be very difficult since it’s unobserved.

I While it is possible to allow the distribution of εt+1 to depend on
xt+1, authors (including Rust) typically assume that any conditionally
independent error terms are also identically distributed over time.
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Rust (1987)

Theorem 1 preview

I Assumption CI has two powerful implications:
I We can write EVθ (xt , it) instead of EVθ (xt , εt , it),
I We can consider a Bellman equation for EVθ (xt , it), which is

computationally simpler than the Bellman equation for Vθ (xt , εt).
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Rust (1987)

Theorem 1
Theorem 1
Given CI,

P (i |x , θ) =
∂

∂u (x , i , θ1)
G (u (x , θ1) + βEVθ (x) |x , θ2)

and EVθ is the unique fixed point of the contraction mapping:

EVθ (x , i) =

ˆ
y

G (u (y , θ1) + βEVθ (y) |y , θ2) p (dy |x , i , θ3)

where
I P (i |x , θ) is the probability of action i conditional on state x
I G (·|, x , θ2) is the surplus function:

G (v |, x , θ2) ≡
ˆ
ε
max

i
[v (i) + ε (i)] q (dε|x , θ2)
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Rust (1987)

Theorem 1, example

I Let vθ (x , i) ≡ u (x , i , θ1) + βEVθ (x , i). This is often called the
conditional value function.

I Suppose that ε (i) is distributed independenly across i with
Pr (ε (i) ≤ ε0) = e−e−ε0 . Then,

G (v (x)) =
´
maxi [v (x , i) + ε (i)]

∏
i e−ε(i)e−e−ε(i)dε

= ln (
∑

i exp (v (x , i))) + γ

where γ ≈ .577216 is Euler’s gamma.
I It is then easy to derive expressions for conditional choice probabilities:

P (i |x , θ) =
exp (vθ (x , i))∑
i ′ exp (vθ (x , i ′))
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Rust (1987)

Some details

I He assumes ε is i.i.d with an extreme value type 1 distribution, and
normalizes its mean to 0 and variance to π2/6 (this is the case on the
previous slide).

I Transitions on observable state:

p (xt+1 − xt = 0|, xt , it , θ3) = θ30
p (xt+1 − xt = 1|, xt , it , θ3) = θ31
p (xt+1 − xt = 2|, xt , it , θ3) = 1− θ30 − θ31

I He tries several different specifications for the cost function and
favors a linear form:

c (x , θ1) = θ11x .
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Rust (1987)

Nested Fixed Point Estimation

I Rust first considers a case with a closed-form expression for the value
function, but this calls for restrictive assumptions on how mileage
evolves. His nested fixed point estimation approach, however, is
applicable quite generally.

I Basic idea: to evaluate objective function (likelihood) at a given θ, we
should solve the value function for that θ
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Rust (1987)

Nested Fixed Point Estimation

Steps:
1. Impute a value of the discount factor β

2. Estimate θ3 – the transition function for x – which can be done
without the behavioral model

3. Inner loop: search over (θ1,RC) to maximize likelihood function.
When evaluating the likelihood function for each candidate value of
(θ1,RC):
3.1 Find the fixed point of the the Bellman equation for (β, θ1, θ3,RC).

Iteration would work, but Rust uses a faster approach.
3.2 Using expression for conditional choice probabilities, evaluate likelihood:

T∏
t=1

P (it |xt , θ) p (xt |xt−1, it−1, θ3)
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Rust (1987)

Estimates
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Rust (1987)

Discount factor

I While Rust finds a better fit for β = .9999 than β = 0, he finds that
high levels of β basically lead to the same level of the likelihood
function.

I Furthermore, the discount factor is non-parametrically non-identified.
Note: He loses ability to reject β = 0 for more flexible cost function
specifications.
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Rust (1987)

Discount factor
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Rust (1987)

Application
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Hotz and Miller (1993)

"Conditional Choice Probabilities and the
Estimation of Dynamic Models"

Hotz and Miller (1993)
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Hotz and Miller (1993)

Motivation

I A disadvantage of Rust’s approach is that it can be computationally
intensive

I With a richer state space, solving value function (inner fixed point) can
take a very long time, which means estimation will take a very, very
long time.

I Hotz and Miller’s idea is to use observable data to form an estimate
of (differences in) the value function from conditional choice
probabilities (CCP’s)

I Rather than following the details of Hotz and Miller (1993) exactly,
these slides aim to emphasize what you can do with the Hotz-Miller
inversion and how it differs from Rust.
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Hotz and Miller (1993)

Rust’s Theorem 1: Values to CCP’s

I In Rust (1987), CCPs can be derived from the value function:

P (i |x , θ) =
∂

∂u (x , i , θ)
G (u (x , θ) + βEV (x) |x , θ2, θ)

I For the logit case:

P (i |x , θ) =
exp (v (x , i , θ))∑

i ′∈I exp (v (x , i ′, θ))

where I is some finite choice set, and

v (x , i , θ) ≡ u (x , i , θ) + βEV (x , i , θ)
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Hotz and Miller (1993)

HM’s Proposition 1: CCP’s to Values

I Notice that CCP’s are unchanged by subtracting some constant from
every conditional value. Thus, consider

dv (x , i) ≡ v (x , i)− v (x , 0)

where i = 0 is some reference action.

I Let Q : R|I|−1 → ∆|I| be the mapping from the differences in
conditional values to CCP’s.

I Note: we’re taking for granted that the distribution of ε identical
across states, otherwise Q would be different for different x .

Proposition 1
Q is invertible.
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Hotz and Miller (1993)

HM inversion with logit errors
I Again, let’s consider the case of where ε is i.i.d. extreme value type I.

I Expression for CCP’s:

P (i |x , θ) =
exp (v (x , i , θ))∑

i ′∈I exp (v (x , i ′, θ))
.

I The HM inversion follows by taking logs and differencing across
actions:

lnP (i |x , θ)− lnP (0|x , θ) = v (x , i , θ)− v (x , 0, θ)

I Thus, in the logit case

Q−1
i (p) = ln pi − ln p0
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Hotz and Miller (1993)

HM estimation overview

1. Estimate process governing evolution of x

2. Estimate conditional choice probabilities
I For a discrete state space, in principle we can just obtain frequency

estimates for each CCP
I For continuous state spaces, common to use some non-parametric

estimator (e.g., using kernels or sieves)

3. Recover value functions from estimated CCP’s using HM inversion.

4. Estimate θ based on estimated value functions.

How we do step 3 depends on the setting, and there are several
possibilities for objective functions in step 4.
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Hotz and Miller (1993)

Example 1: estimation with terminal action

I Suppose i = 0 is a terminal action, i.e., EV (x , 0, θ) = 0, and

v (x , 0, θ) = u (x , 0, θ)

I Then, sticking with the logit case,

EV (xt , it , θ) =
´

xt+1
ln (
∑

i′ exp (v (xt+1, i ′, θ))) p (dxt+1|xt , it) + γ

=
´

xt+1
ln (
∑

i′ exp (dv (xt+1, i ′, θ)

+ u (xt+1, 0, θ))) p (dxt+1|xt , it) + γ

=
´

xt+1
ln (
∑

i′ exp (dv (xt+1, i ′, θ))) p (dxt+1|xt , it)

+
´

xt+1
u (xt+1, 0, θ) p (dxt+1|xt , it) + γ
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Hotz and Miller (1993)

Example 1: estimation with terminal action

Next, plug in the estimate from the Hotz-Miller inversion,

d̃v (x , i) = ln P̂ (x , i)− ln P̂ (x , 0) ,

to construct

ẼV (xt , it , θ) =
´

xt+1
ln
(∑

i exp
(
d̃v (x , i)

))
p (dxt+1|xt , it)

+
´

xt+1
u (xt+1, 0, θ) p (dxt+1|xt , it) .
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Hotz and Miller (1993)

Example 1: estimation with terminal action

The expression for d̃v can be fed into the expression for continuation
values:

ṽ (x , i , θ) = u (x , i , θ) + βẼV (x , i , θ) ,

which can be used to form new expressions for CCP’s:

P̃ (x , i , θ) =
exp (ṽ (x , i , θ))∑
i ′ exp (ṽ (x , i ′, θ))

.
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Hotz and Miller (1993)

Example 1: estimation with terminal action

I Note that, unlike Rust’s predicted choice probabilities, P̃ can be
computed without solving a value function.

I Finally, reconstructed CCP’s can be used to create a
pseudo-log-likelihood function:

θ̂NPL = argmax
θ

T∑
t=1

ln
(
P̃ (xt , it , θ)

)
.

I Another possibility is to minimize the distance between predicted and
estimated CCP’s:

θ̂ = argmin
θ

∥∥∥P̃ (θ)− P̂
∥∥∥ .
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Hotz and Miller (1993)

Example 2: finite state space

Let’s consider another way of computing the surplus:

E (maxi {v (x , i , θ) + ε (i)})

=
∑

i P (x , i , θ) E [v (x , i , θ) + ε (i) |∀i ′ : v (x , i , θ) + ε (i) ≥ v (x , i ′, θ) + ε (i ′)]

=
∑

i P (x , i , θ) (v (x , i , θ) + ψ (x , i , θ))

where

ψ (x , i , θ) = E
[
ε (i) |∀i ′ : v (x , i , θ) + ε (i) ≥ v

(
x , i ′, θ

)
+ ε

(
i ′
)]
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Hotz and Miller (1993)

Example 2: finite state space

I In the case of logit errors, we have the simple expression
ψ (x , i , θ) = γ − lnP (x , i , θ).

I Define F (i) as the |X | × |X | matrix of state transitions for action i .
Then,

EV (θ) =

(
I|X | − β

∑
i

P (i) ∗ F (i)
)
−1
(∑

i
P (i) ∗ (u (i , θ) + ψ (i , θ))

)

where * denotes elementwise multiplication.

I Again, we can construct ẼV (θ) using first-stage estimates of
conditional choice probabilities.

I Then, as before, we can plug ẼV (θ) into our expressions for
conditional values and conditional choice probabilities.
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Su and Judd (2012)

"Constrained Optimization Approaches to
Estimation of Structural Models"

Su and Judd (2012)
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Su and Judd (2012)

MPEC approach

I Rust’s approach was based on writing a likelihood function like so:

max
θ
L (θ,EV (θ) ,X )

where V (θ) is the value function, and X is the data.
I EV (θ) is defined as the unique solution to EV = T (EV , θ)

I Su and Judd suggest formulating the following constrained
optimization problem instead:

max
θ
L (θ,EV ,X )

subject to
EV = T (EV , θ)
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Su and Judd (2012)

MPEC approach: computational advantages

I Rather than solving the value function for each candidate θ, the
Bellman equation is a constraint.

I The result is that the solver need not impose EV = T (EV , θ) every
time the objective function is evaluated, but the Bellman equation
must hold at the solution.

I the result is that the Bellman equation is evaluated many fewer times
during the optimization routine, and there can be substantial speed
gains.

I Note: this estimator is equivalent to Rust’s, it’s just a different
algorithm. In contrast, estimators based on the Hotz-Miller inversion
are typically different estimators.
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Aguirregabiria and Mira (2002)

"Swapping the Nested Fixed Point Algorithm:
A Class of Estimators for Discrete Markov Decision Models"

Aguirregabiria and Mira (2002)
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Aguirregabiria and Mira (2002)

Overview

I Introduces a class of estimators that bridges the gap between Rust
(1987) and Hotz and Miller (1993).

I Don’t need to fully solve for value function at each θ like Rust’s
approach, but more efficient than Hotz and Miller’s two-stage
approach.
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Aguirregabiria and Mira (2002)

V to P
I We can map from value functions to CCP’s. Recall the ex ante value

function:

V̄θ (xt) = max
a

{
ū (a, xt , θ) + βE

[
V̄θ (xt+1) |at = a

]}
where ū is the mean utility (i.e., utility function without the
idiosyncratic shock).

I And conditional value function:

vθ (a, xt) ≡ ū (i , xt , θ) + βEVθ (xt , εt , it)

I Then conditional choice probabilities can be written as a function of
the conditional value function:

P (a|xt ; θ) =

ˆ
I
[
a = argmax

j
[vθ (a, xt) + ε (j)]

]
g (dε|)

where g is the pdf for the idiosyncratic shocks. Note that this does
not depend on θ directly – all we need to know is v (or V ).
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Aguirregabiria and Mira (2002)

P to V
I Let the mapping from V to P be written P = Λ (V ).

I We can also map from P to V using the Hotz-Miller inversion. Notice
that

V̄θ (xt) =
∑

a
P (a|xt ; θ)

[
ū (a, xt , θ) + E [ε (a) |xt , a] + β

∑
xt+1

f (xt+1|xt , a) V̄θ (xt+1)

]

where E [ε (a) |xt , a] is the conditional expectation of the
idiosyncratic shock, conditional on the choice of action.

I E [ε (a) |xt , a] , too, can be written as a function of P. Write this as
e (a,P). It has a convenient expression when ε has the EVT1
distribution:

e (a,P (x)) ≡ E [ε (a) |x , a] = γ − ln (P (a|x ; θ))

where γ is Euler’s gamma.
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Aguirregabiria and Mira (2002)

P to V

I In matrix notation (rows corresponding to states x),

V̄ =
∑

a
P (a) ∗

[
ū (a) + e (a,P) + βF (a) V̄

]

I We can solve for V :

φθ (P) ≡ V̄ =
(
I − βF U (P)

)−1
(∑

a
P (a) ∗ [ū (a; θ) + e (a,P)]

)

where F U (P) =
∑

a P (a) ∗ F (a).
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Aguirregabiria and Mira (2002)

Rust vs. Hotz-Miller
I Note: armed with some estimate of V̄ , we can evaluate a likelihood

function for θ:
max
θ

∑
i ,t

lnP (ait , xit)

with

P (a, x) =

ˆ
I
[
a = argmax

j

[
ū (a, x ; θ) + E

[
V̄
(
x ′
)
|j , x

]
+ ε (j)

]]
g (dε|)

I Rust’s estimator can be seen as finding the fixed point of

V̄ = φθ
(

Λ
(
V̄
))

for each θ, and then searching for the maximum likelihood value of θ.
I Hotz and Millers estimator estimates P in a first stage, and then

takes φθ (P) as the estimate of V . This is referred to as pseudo
maximum likelihood.
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Aguirregabiria and Mira (2002)

Aguirregabiria and Mira’s estimators

I We can start out like Hotz and Miller: estimate first stage CCP
estimates P̂(1), then estimat theta. The estimate of θ implies an
estimate of V̄ : V̂ (1).

I After obtaining the initial estimate of θ (and V ), we can re-compute
CCP’s:

P̂(2) = λ
(
V̂ (1)

)
,

and then a new value of θ (and V ) can be estimated using P̂(2).

I This procedure can be repeated, creating a new class of estimators
(Nested Pseduo Likelihood). It starts out with the HM estimator, and
Aguirregabiria and Mira show that they converge to Rust’s estimator.

I Their Monte Carlo simulations suggest that just one or two extra NPL
iterations achieves most of the asymptotic efficiency gains of MLE
(Rust) without the computational burden of MLE.
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Magnac and Thesmar (2002)

"Identifying Dynamic Discrete Decision Processes"
Magnac and Thesmar (2002)
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Magnac and Thesmar (2002)

Setup

I x ∈ X - state variables
I pi (x) - choice probabilities (data)
I ui (x) - per-period utility from action i in state x
I vi (x) - conditional value function of action i in state x
I K - the reference action
I G - distribution of conditionally independent shocks
I q - the Hotz-Miller inversion function. i.e., qi (p (x)) = vi (x)− vK (x)

I R - the surplus function, R (v ; G) = EG (maxi {vi + εi})
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Magnac and Thesmar (2002)

Lemma 1

Lemma 1 is basically a convenient restatement of the Hotz Miller inversion.

Lemma 1
For any action j and state x ,

uj (x) = uK (x) + qj (p (x) ; G)
−β (E [vK (x ′) |x , j]− E [vK (x ′) |x ,K ])
−β (E [R (q (p (x ′) ; G)) |x , j]− E [R (q (p (x ′) ; G)) |x ,K ])
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Magnac and Thesmar (2002)

Lemma 1, example

Let’s derive Lemma 1 for the case of logit errors.

ln
(

pj (x)
pK (x)

)
= vj (x)− vK (x)

⇔
uj (x) = uK (x) + ln

(
pj (x)
pK (x)

)
−β

(
E
[
V̄ (x ′) |x , j

]
− E

[
V̄ (x ′) |x ,K

])
= uK (x) + ln

(
pj (x)
pK (x)

)
−βE

[
ln
∑

i
pi (x ′)
pK (x ′) exp (vK (x ′)) |x , j

]
+βE

[
ln
∑

i
pi (x ′)
pK (x ′) exp (vK (x ′)) |x ,K

]
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Magnac and Thesmar (2002)

Lemma 1, example

Let’s derive Lemma 1 for the case of logit errors.

ln
(

pj (x)
pK (x)

)
= vj (x)− vK (x)

⇔
uj (x) = uK (x) + ln

(
pj (x)
pK (x)

)
−β

(
E
[
V̄ (x ′) |x , j

]
− E

[
V̄ (x ′) |x ,K

])
= uK (x) + ln

(
pj (x)
pK (x)

)
−β (E [vK (x ′) |x , j]− E [vK (x ′) |x ,K ])

−β
(
E
[
ln
∑

i
pi (x ′)
pK (x ′) |x , j

]
−E

[
ln
∑

i
pi (x ′)
pK (x ′) |x ,K

])
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Magnac and Thesmar (2002)

Lemma 1

Proposition 2
Let C = {c|c = (β,G , uK (·) , vK (·))}.
(i) For a given c ∈ C , there exists one vector (u1 (·) , . . . , uK−1 (·))
compatible with p (X ).
(ii) Let u be the (u1 (·) , . . . , uK−1 (·)) vector associated with c and let u′
be associated with c ′ 6= c. Then, (u, c) and (u′, c ′) are observationally
equivalent.

Thus, there is an observationally equivalent model associated with each
element of C = {c|c = (β,G , uK (·) , vK (·))}
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Magnac and Thesmar (2002)

Restrictions for identification

I It’s common to do something like assuming uK (x) = 0 for all x

I This is not innocent. Note that restricting u (x) = 0 for a single x is
an innocent normalization, but restricting payoffs to be flat across
states is a substantive assumption.

I Sometimes such restrictions are very natural. Think about what the
restriction is in Rust (1987).

I In some (limited) cases, counterfactuals are identified even though the
utility function isn’t fully identified:

I Norets and Tang (2013), "Semiparametric Inference in Dynamic Binary
Choice Models"

I Aguirregabiria and Suzuki (2013), "Identification and Counterfactuals
in Dynamic Models of Market Entry and Exit"
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Magnac and Thesmar (2002)

Identifying the discount factor

Idea behind Magnac and Thesmar’s Proposition 4:

I Suppose you have different values of state variables which give the
same current profits, but have different expectations for future values
of the state variables.

I e.g., perhaps we observe both current and futures prices

I In this case, one can identify the discount factor because we have
something that shifts continuation values rather than shifting both
current profits and continuation values.
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