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Introduction

Why study auctions?

I Non-trivial share of economic activity: auction houses, government
procurement, oil leases, electricity, eBay, internet advertising

I Auctions sometimes have nice properties. E.g., second-price auction
leads to efficient allocation without need for competition among
sellers.

I Appealing for researchers:
I The rules of the game and possible strategies are typically transparent

(to agents and the econometrician)
I Lots of data: usually, data on outcomes (winning price), sometimes

also data on bids.
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Introduction

Types of auctions

I Number of items sold
I Single-unit: oil leases, art sales, procurement contracts, timber
I Multi-unit: treasury bills, spectrum, electricity

I Allocation and payment rule
I In practice, can have sealed-bid and open outcry auctions. In theory,

we think some of these procedures are isomorphic.
I First-price auction ≈ Dutch auction ≈ descending-price auction
I Second-price auction ≈ English auction ≈ ascending-price auction
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Introduction

Assumptions about bidders

I Private values: a bidder’s valuation of the good is only a function of
her own information; typically the bidder is fully aware of her own
valuation.

I Common values: all bidders have the same valuation of the good, but
each may only have an imperfect signal of the good.

I Interdependent/affiliated values: bidders don’t have exactly the same
valuations, but there is some correlation. E.g., another bidder’s signal
would be informative for me, but not as informative for me as my own
signal. Such settings are much more difficult to analyze, theoretically
or empirically.
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Introduction

Goals of empirical analysis

I Generally estimation aims at recovering bidders’ valuations.

I Once bidder’s valuations are known, we can infer welfare and predict
how equilibrium would change if environment (e.g., auction rules)
were changed.
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Introduction

Different approaches

I We will discuss three types of approaches:
1. Explicit approach that solves for equilibrium (simulation)

Laffont, Ossard, and Vuong (1995)

2. Indirect approach based on necessary first-order conditions (more
flexible)
Guerre, Perrigne, and Vuong (2001)

3. Alternative approach that does not rely on full model of optimal
behavior (most flexible)
Haile and Tamer (2003)
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LOV1995

"Econometrics of First-Price Auctions"
Laffont, Ossard, and Vuong (1995)
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LOV1995

Overview

I The auction: a descending (Dutch) auction for cases of eggplants (!!)
Sellers: farmers. Buyers: resale firms/distributors.

I Observed: winning bid and some characteristics of the auction.

I Assumption: independent private values.

I Structural estimation recovers distribution of valuations. This could
then be used to predict outcomes and welfare impacts of different
auction designs, for instance.
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LOV1995

Setup

I I symmetric bidders have valuations vi ∼ F (·|za, θ).

I reserve price p0.

I We would like to estimate F .

I Challenge: only winning price is observed.

I Strategy: use moments based on distribution of winning bid.
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LOV1995

Equilibrium
I For now: ignore reserve price (see paper for details)
I Let β (v) denote symmetric bidding function. For this to represent an

equilibrium strategy:

max
bi

(vi − bi ) F
(
β−1 (bi )

)I−1
.

noting that F
(
β−1 (bi )

)I−1 is probability of winning.
I First-order condition:

(vi − bi ) (I − 1) F
(
β−1 (bi )

)I−2
f (vi )

1
β′ (vi )

− F
(
β−1 (bi )

)I−1
= 0

I Solution to this differential equation:

β (vi ) = e (vi , I,F ) ≡ vi −

´ v
v F (x)I−1 dx

F (vi )
I−1
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LOV1995

Winning bid
I What we observe is winning bid, or

max
i
{β (vi )} = max

i
{e (vi , I,F )} = e (vI:I , I,F ) ,

which is the bid of the individual with the highest value, noting that
the β (v) is a strictly increasing function.

I The winning bid satisfies

e (vI:I , I,F ) =

ˆ ∞
v

e (v , I,F ) I · F (v)I−1 f (v) dv

I For a given F , we could simulate the distribution of the winning bid,
and then see how the simulated distribution matches the observed
distribution. However, a simpler approach is possible based on the
revenue equivalence theorem.
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LOV1995

Revenue equivalence

Revenue Equivalence Theorem
Assume I risk-neutral bidders have independent private values drawn from
common atomless distribution with full support on [v , v̄ ]. Any auction
mechanism which is (i) efficient in awarding the object to the bidder with
highest valuation and (ii) leaves any bidder with vi = v with zero surplus
yields the same expected revenue for the seller and results in the same
expected payment for a bidder with a given valuation.

I This implies equivalence between first- and second-price auction, and
the second-price auction is much easier to simulate (the winning bid
is the second-highest valuation).
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LOV1995

Estimation
I LOV assume a parametric class of distributions F (·|θ, za)

I For each θ and auction a,
I draw I simulated valuations from F (·|θ, za)
I sort draws and set bw ,s

a and second highest valuation
I With S simulations, approximate expectation of second-order statistic:

E (bw ; θ, za) = S−1
∑

bw ,s
a

I Note that E (bw ; θ, za) will be an estimate of the expected winning bid
from the first or second-price auction due to revenue equivalence.

I Estimate θ with NLLS:

min
θ

∑
a

(bw
a − E (bw ; θ, za))2

where bw
a is the observed winning bid from auction a.
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LOV1995

Egglplant auctions

I LOV observe winning bids and auction characteristics, and they
assume that are distributed log-normally distributed around a linear
function of the auction characteristics. i.e.,

E log vi = θ′za

I We then add an iid normal shock to the above to get an individuals
(log) valuation.

I They calibrate the variance of shocks with the variance of prices (can
think of this as another moment). They don’t actually observe
number of bidders, so they do sensititivity analysis with respect to I.
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LOV1995
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GPV2001

"Optimal Nonparametric Estimation of First-Price Auctions"
Guerre, Perrigne, and Vuong (2001)
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GPV2001

Overview

I Main idea: write necessary first-order conditions for optimal bidding
as a function of obsjects which can be recovered from data

I Can write FOC as a function of the distribution of bids (G) rather
than the distribution of valuations (F )

I Monotonicity of bidding allows recover of distribution of valuations
from distribution of bids – this can be done non-parametrically

I It’s best if all bids are observed in practice, but estimation can still be
done in principle with only observations of winning bid.
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GPV2001

Equilibrium

I Recall bidder’s problem:

max
bi

(vi − bi ) F
(
β−1 (bi )

)I−1
.

I First-order condition:

(vi − bi ) (I − 1) F
(
β−1 (bi )

)I−2
f (vi )

1
β′ (vi )

− F
(
β−1 (bi )

)I−1
= 0

I Rearranging:

β′ (vi ) = (vi − β (vi )) (I − 1)
f (vi )

F (vi )
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GPV2001

Equilibrium

I First-order condition:

β′ (vi ) = (vi − β (vi )) (I − 1)
f (vi )

F (vi )

I Due to monotonicity, G (bi ) = G (β (vi )) = F (vi ), and

g (bi ) = f (vi ) · 1/β′ (vi ) .

I Combining the above equations, we get a useful expression for
equilibrium strategy:

vi = bi +
G (bi )

(I − 1) g (bi )
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GPV2001

Estimation with observable bids

I We have derived an expression for an indvidual’s valuation in terms of
the distribution of bids:

vi = bi +
G (bi )

(I − 1) g (bi )

I This means we can look at the problem of recovering valuations as a
problem of recovering the distribution of bids.

I When bids are observable, this is just a question of how well we can
approximate the distribution. With tons of data on bids, it is trivial to
construct a good non-parametric approximation to G (e.g., kernel
functions).

20 / 39



GPV2001

Estimation with observable bids
I We can estimate g using kernels:

ĝ (b) = (A · I)−1∑
a

∑
i

1
hK

(b − bit
h

)
,

I and G using frequencies:

Ĝ (b) = (A · I)−1∑
a

∑
i
1 (bti ≤ b) ,

I and recover valuations:

v̂i = bi +
Ĝ (bi )

(I − 1) ĝ (bi )

I Then we can similarly estimate f and F based on recovered v̂i .
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GPV2001

Estimation with winning bids

I Sometimes we only observe winning bid. We can still use these same
ideas and add one piece: the relationship between the distribution of
the winning bid GI:I (first-order statistic) and the underlying bid
distribution G .

I With independent private values, we get very simple relationship:

GI:I (b) = G (b)I

I In principle, this allows us to recover G from GI:I . In practice, we may
not observe many winning bids at low values. i.e., we only have
substantial precision at the values of b which are observed as winning
bids at a high probability.
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Asker (2010)

"A Study of the Internal Organization of a Bidding Cartel"
John Asker (2010)
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Asker (2010)

Overview

I A study of a bidding ring of stamp dealers, bidding on collectible
stamps in New York auction houses.

I The ring used knockout auctions, internal auctions among members
to allocate the good among ring members.

I The knockout mechanism leads to some interesting and
counterintuitive effects:

I Side-payments provided incentives to bid above valuations.
I Overbidding sometimes caused inefficient allocations.
I Overbidding sometimes increased the price received by sellers.
I Overall, reduced competition more than compensated for the

overbidding, and ring members benefited substantially from the scheme
on average.
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Asker (2010)

The Knockout Auctions

I Before the actual (target) auction, ring members could submit bids in
knockout auction run by a hired agent.

I The ring’s bidding limit in the target auction is the maximum price
from the knockout auction. A bidding agent would submit the ring’s
bid.

I If the ring wins the target auction, the highest bidder from the
knockout auction gets the item and may owe side-payments to other
knockout participants.

I "Sidepayments involve ring members sharing each increment between
bids, provided that their bids are above the target auction price. Half
the increment is kept by the winner of the knockout, and the balance is
shared equally between those bidders who bid equal to or more than
the "incremental" bid."
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Asker (2010)
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Asker (2010)
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Asker (2010)

Bidder heterogeneity
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Asker (2010)

Bidder D: "My objective, basically was, you know, make money from these
people as opposed to actually buying the stamps."
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Asker (2010)

Naïve analysis

I Naïve estimates of damages can be easily calculated by assuming that
knockout-auction bids represent true valuations.

I Then, the difference between the transaction prices in target auctions
and the second highest bid in corresponding knockout auctions is a
measure of damages (in cases where the second highest bid in the
knockout was higher than the transaction price in the target auction).

I Note: target auctions were English auctions.

I However, incentives created by sidepayments call for a more careful
assessment.
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Asker (2010)
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Asker (2010)

Model basics

I Each bidder i has valuation in auction k of vik ∈ [vi , v̄i ] drawn from
Fi (v).

I Valuations are private and independently distributed, but not
identically distributed across bidders.

I Ring members know the number of other bidders participating in a
knockout, but not the identities.
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Asker (2010)

Knockout bidding

I Expected profits:

maxb
´ b
−∞ (vik − x) hr (x) dxF−i (φ (b))

−1
2
´ b
−∞
´ b

x (y − x) hr (x) f−i (φ (y)) dydx

−1
2
´ b
−∞ (b − x) hr (x) dx (1− F−i (φ (b)))

where
I hr is the density function for the highest nonring bid,
I φ is the inverse strategy function,
I αj is the probability of j ’s participating in the auction,
I and F−i (φ (b)) =

(∑
j 6=i αjFj (φj (b))

)
/
∑

j 6=i αj
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Asker (2010)

Optimal bidding

I FOC for profit maximization:

(vik − b) hr (b) F−i (φ (b)) +
´ b
−∞ (vik − x) hr (x) dxf−i (φ (b))

−
´ b
−∞ (b − x) hr (x) dxf−i (φ (b)) + 1

2
´ b
−∞ hr (x) dx (1− F−i (φ (b))) = 0.
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Asker (2010)

Recovering valuations

I The first-order condition cannot be inverted for v in general, but with
only two bidders,

vik = b −
1
2Hr (b) (1− G−i (b))

(hr (b) G−i (b) + Hr (b) g−i (b))

where G−i is the distribution function of b−i .
I Asker focuses on auctions with two bidders to avoid identification

issues.
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Asker (2010)

Overbidding

I Lemma 1 states that ∂πik
∂bik

∣∣∣
bik=vik

≥ 0.

I Therefore, knockout bids are weakly greater than valuations.

I Corollary: the knockout auctions can lead to inefficient allocations.
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Asker (2010)

Auction heterogeneity

I Extending the model to allow for unobserved auction-level
heterogeneity, write valuations as:

uik = exkγ (vikεk) .

I Asker’s structural approach recovers the distribution of v ’s and ε’s.
We’re going to ignore details of dealing with the ε’s here, but you
should be able to see how the distribution of v ’s could be estimated if
we don’t have the ε’s (think GPV).
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Asker (2010)

Bidder heterogeneity

I For simplicity, he classifies bidders as either "weak" or "strong" and
estimates a different distribution of valuations F (·) for each type.

I Remember that bidders don’t know which other bidders are
participating. Empirical frequencies of each bidder’s participation are
used for αj ’s.
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Asker (2010)

Notes on counterfactuals

I Solving for equilibria of the knockout auctions might be hard, but his
counterfactuals are only English auctions, which are analogous to
second price auctions and therefore easy to solve. This makes
counterfactuals WAY easier.

I A difficulty is not knowing the distribution of (second highest)
nonring bids.

I U.B. assumption: second highest nonring value is equal to highest
nonring valuation. This provides upper bound to damages. Why?

I L.B. assumption: second highest nonring value is equal to minimum of
highest nonring valuation and highest ring valuation. The provides
lower bound to damages. Why?
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