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Olley and Pakes (1996)

"The Dynamics of Productivity in the
Telecommunications Equipment Industry"

Olley and Pakes (1996)
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Olley and Pakes (1996)

Overview

I Analyzes effects of deregulation in telecommunications equipment
industry.

I Deregulation increases productivity, primarily through reallocation
toward more productive establishments.

I Estimation approach deals with simultaneity and selection issues.
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Olley and Pakes (1996)

Background I

I AT&T had a monopoly on telecommunications services in the US
throughout most of the 20th century (note: a telecommunications
network is a classic example of a natural monopoly).

I Before the regulatory change, AT&T required that equipment
attached to their network must be supplied by the AT&T, and
virtually all of their equipment was supplied by their subsidiary,
Western Electric. Thus, they leveraged their network monopoly to a
monopoly on phones.
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Olley and Pakes (1996)

Background II

I A change in technology opened up new markets for
telecommunications equipment (e.g., fax machines)

I Meanwhile, the FCC (regulatory agency) decided to begin allowing
the connection of privately-provided devices to AT&T’s network.

I A surge of entry into telecommunications equipment manufacturing
followed in the late 1960’s and 1970’s.
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Olley and Pakes (1996)

Background III
I AT&T continued purchasing primarily from Western Electric into the

1980’s (although consumers were free to purchase devices from other
companies).

I The divestiture (breakup) of AT&T created seven regional Bell
companies that were no longer tied to Western Electric, and they
were prohibited from manufacturing their own equipment.

I The divestiture was implemented in January 1984. Western Electric’s
share dropped dramatically.
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Olley and Pakes (1996)

Entry
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Olley and Pakes (1996)

Exit
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Olley and Pakes (1996)

The model

I Incumbent firms (i) make three decisions:
I Whether to exit or continue. If they exit, they receive a fixed scrap

value Ψ and never return.
I If they stay, they choose labor lit ,
I and investment iit .

I Capital accumulation:

kt+1 = (1− δ) kt + it

I Another state variable is age: at+1 = at + 1
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Olley and Pakes (1996)

Production

I They assume the following Cobb-Douglas production function:

yit = β0 + βaait + βkkit + βl lit + ωit + ηit

where yit is output, kit is capital, lit is labor, ωit is a persistant
component of productivity, and ηit is a transient shock to productivity.

I Productivity evolves according to a Markov process: F (·|ω).

I η is either measurement error, or there is no information about it
when labor decisions are made.
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Olley and Pakes (1996)

Equilibrium behavior

I They assume the existence of a Markov perfect equilibrium. Market
structure and prices are state variables in the MPE, but they are
common across firms, so they can be absorbed into time subscripts
for the value function:

Vt (ωt , at , kt) = max
{

Ψ, supit≥0 πt (ωt , at , kt)− c (it)

+βE [Vt+1 (ωt+1, at+1, kt+1) |Jt ]

where Jt represents the information set at time t.

I Equilibrium strategies can be decribed by functions ωt (at , kt) and
it (ωt , at , kt).

I A firm will continue if and only if ω ≥ ωt (at , kt).
I Continuing firms invest it = it (ωt , at , kt)
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Olley and Pakes (1996)

Aside: Markov perfect equilibrium

I It’s worth defining Markov perfect equilibrium, as it will come up
repeatedly in the course.

I Loosely, it means a subgame perfect equilibrium in which strategies
are functions of “real” (payoff relevant) state variables.

I This rules out conditioning on variables that don’t impact present or
future payoffs. For example, in the repeated prisoner’s dilemma,
cooperation with grim trigger punishments is ruled out.

I Markov perfect equilibrium is to dynamic games what perpetual static
Nash is to repeated games.
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Olley and Pakes (1996)

Thinking about bias

I How does the simultaneity of the input decision bias the labor
coefficient?

I Up: when productivity is high, a firm will use more labor

I How does selection due to exit bias the capital coefficient estimate?

I Down: firms with high capital have lower cutoffs ωt for exit. Thus,
conditional on survival, there is a negative correlation between k and ω
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Olley and Pakes (1996)

Thinking about bias
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Olley and Pakes (1996)

Productivity inversion

I In a technical paper, Pakes (1994) shows that optimal investment
it (ωt , at , kt) is monotonically increasing in ωt , provided it > 0.

I Given monotonicity, optimal investment can be inverted for
productivity:

ωit = ht (iit , ait , kit) .

I We’re going to talk more about the it > 0 requirement with
Levinsohn and Petrin (2003).
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Olley and Pakes (1996)

First stage model

I Substituting in the inversion function,

yit = βl lit + φt (iit , ait , kit) + ηit

where

φt (iit , ait , kit) = β0 + βaait + βkkit + ht (iit , ait , kit)

I We can estimate this equation using a semiparametric regression.
This may identify βl , but not the other coefficients.

I With Ackerberg, Caves, and Frazer (2006), we will think more
carefully about what’s identifying βl , but don’t worry about it for now.
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Olley and Pakes (1996)

First stage output

I With β̂l , we can also estimate φ:

φ̂it = yit − β̂l lit

I So far we have estimates of βl and φ. βkk and ω are both in the
control function φ, and we would like to separate them. We’re going
to use the Markov assumption on ω for identification.
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Olley and Pakes (1996)

Identifying βk ,βa

I Let’s first think about how to do this without worrying about exit.
Define

g (ωi ,t−1) = E [ωi ,t |ωi ,t−1] ,

so that
ωi ,t = g (ωi ,t−1) + ξi ,t

where ξi ,t+1 is the innovation (unexpected change) to productivity.

I We can write out a second stage regression equation:

φi ,t = βkkit + βaait + g (ωi ,t−1) + ξi ,t

and note that ωi ,t−1 can also be written as a function of (βk , βa):

φi ,t = βkkit + βaait + g (φi ,t−1 − βkki ,t−1 − βaai ,t−1) + ξi ,t
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Olley and Pakes (1996)

Identifying βk ,βa

I Second stage regression equation:

φi ,t = βkkit + βaait + g (φi ,t−1 − βkki ,t−1 − βaai ,t−1) + ξi ,t

I One way to think about this: once we specify a parametric function
for g , this basically becomes OLS.

I NLLS: we can guess values of (βk , βa), (nonparametrically) estimate g
conditional on those value of (βk , βa), and then back out ξi ,t (βk , βa).
Search over (βk , βa) to minimize sum of squares of ξi ,t (βk , βa).
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Olley and Pakes (1996)

Selection

I Let Pt = Pr (χt+1 = 1|ωt+1 (kt+1, at+1) , Jt) be the propensity score
for exit.

I As long as the conditional density of ωt+1 has full support, this can
be inverted to express ωt+1 = f (Pt , ωt)
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Olley and Pakes (1996)

The second stage with selection

I Write the expectation of yt+1 − βl lt+1 conditional on survival:

E [yt+1 − βl lt+1|at+1, kt+1, χt+1 = 1]

= βaat+1 + βkkt+1 + g (ωt+1, ωt)

where g (ωt+1, ωt) = E [ωt+1|ωt , χt+1 = 1]

I Using the inversion of the selection probability, we can write

g (ωt+1, ωt) = g (f (Pt , ωt) , ωt)

which can be written more simply as g (Pt , ωt).
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Olley and Pakes (1996)

Final step

I Conditional on values of (βa, βk), we can construct an estimate of
ωt = φt − βaat − βkkt

I Finally, write

yt+1 − βl lt+1 = βaat+1 + βkkt+1 + g (Pt , φt − βaat − βkkt)
+ξt+1 + ηt+1

I Again, we can use NLLS to estimate (βk , βa).

I Note that E (ξi ,t li ,t) 6= 0 is what creates the need for the first stage.
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Olley and Pakes (1996)

Estimation steps

1. First stage semi-parametric regression:

yit = βl lit + φt (iit , ait , kit) + ηit

2. Estimate propensity scores: Pt = Pr (χt+1 = 1|ωt+1 (kt+1, at+1) , Jt)

3. Estimate remaining parameters:

yt+1 − βl lt+1 = βaat+1 + βkkt+1 + g (Pt , φt − βaat − βkkt)
+ξt+1 + ηt+1

using fact that innovation term ξt+1 is mean-uncorrelated with
variables determined at t, including kt+1.
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Olley and Pakes (1996)

I Why do within estimators have lower capital coefficients?
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Olley and Pakes (1996)

I Estimate of productivity: pit = exp
(
yit − β̂l lit − β̂kkit − β̂aait

)
I Plants that eventually exit have low productivity growth
I New entrants tend to have lower productivity than continuing

establishments
I Surviving entrants tend to have greater average productivity growth

than incumbents.
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Olley and Pakes (1996)

Productivity decomposition

I Aggregate productivity: pt =
∑Nt

i=1 sitpit .

I Can be decomposed as follows:

pt =
∑Nt

i=1 (s̄t + ∆sit) (p̄t + ∆pit)

= Nt s̄t p̄t +
∑Nt

i=1 ∆sit∆pit
= p̄t +

∑Nt
i=1 ∆sit∆pit

where p̄t are unweighted mean productivity and shares in the
cross-section.

I Thus, aggregate productivity decomposes into an unweighted mean
and a covariance term.
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Olley and Pakes (1996)
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Pavcnik (2002)

"Trade Liberalization, Exit, and Productivity Improvements:
Evidence from Chilean Plants"

Nina Pavcnik (2002)
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Pavcnik (2002)

Overview

I First application of OP, and early paper in what is now a massive
structural literature on trade liberalization and productivity.

I Investigates effects of "massive trade liberalization" in Chile from late
70’s to early 80’s.

I The Pinochet regime was tumultuous, and there was a large recession
in 82-83, so a simple before/after comparison wouldn’t be plausible.

I Combines structural estimation with diff-in-diffs identification strategy

I before vs. after trade liberalization
I sectors affected by trade liberalization vs. non-traded goods industries

31 / 95



Pavcnik (2002)

Findings

I Consistent with OP, selection and simultaneity bias substantially bias
estimates of the coefficients of the production function

I Substantial within-plant productivity improvements

I There was massive exit during the period of liberalization, and exiting
plants tended to be less productive
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Pavcnik (2002)

I massive exit
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Pavcnik (2002)

Some details

I Methodologically almost identical to Olley and Pakes.

I One difference: while OP use value added as output, Pavcnik uses
sales and includes materials on the right-hand side:

yit = β0 + βxit + βkkit + eit

where x includes unskilled labor, skilled labor, and material inputs.

I In the first-stage regression, she estimates β, i.e., the coefficients on
the labor and materials variables.

I Zero investment is a significant phenomenon in the data, and she
finds it doesn’t matter whether she drops observations with iit = 0 or
if she ignores the monotonicity issue and includes them.
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Pavcnik (2002)

More details

I Sales deflated using price indices for four-digit industry codes. Note
that this leaves A LOT of room for price heterogeneity. Things that
are four-digit industries:

I Manufacture of malt liquors and malt
I Manufacture of consumer electronics
I Manufacture of motor vehicles

I When estimating relationship between trade and productivity, she
controls for heterogeneous prices/markups using plant-specific fixed
effects.

I Estimates model separately for each 2- or 3-digit industry.
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Pavcnik (2002)
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Pavcnik (2002)

Diff-in-diffs

I After estimating productivity, she estimates the following regression:

prit = α0 +α1(Time)it +α2(Trade)it +α3(Trade ∗Time)it +α4Zit +νit

where Time includes time dummies and Trade includes indicators for
the firm’s sector.

I Idea is that year dummies capture omitted macroeconomic variables.
We’re hoping that different sectors don’t have heterogeneous
responses to macroeconomic shocks.
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Pavcnik (2002)
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Levinsohn and Petrin (2003)

"Estimating Production Functions Using Inputs to Control for
Unobservables"

Levinsohn and Petrin (2003)
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Levinsohn and Petrin (2003)

Main idea

I Same general framework as Olley and Pakes (1996)

I Main idea: rather than use investment to control for unobserved
productivity, use materials inputs.

I Two proposed benefits:
I Investment proxy isn’t valid for plants with zero investment. Zero

materials inputs typically an issue in the data.
I Investments may be "lumpy" and not respond to some productivity

shocks.
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Levinsohn and Petrin (2003)

Downsides of investment

I We need to drop observations with zero investment, which can lead
to a substantial efficiency loss. Zero investments happen at a
non-trivial rate in annual production data.

I Firms might face non-convex capital adjustment costs leading to flat
regions in the i (ω) function even at positive levels of investment.

I What if investment actually happens with only partial information
about productivity and then labor is set once the productivity
realization is fully observed?
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Levinsohn and Petrin (2003)

OP equations

I Production function:

yt = β0 + βl lt + βkkt + ωt + ηt .

I First stage regression:

yt = βl lt + φt (it , kt) + ηt

with φt (it , kt) = β0 + βkkt + ωt (it , kt).
I Final regression:

y∗
t = yt − βl lt = β0 + βkkt + E [ωt |ωt−1] + η∗

t

where η∗
t = ηt + (ωt − E (ωt |ωt−1)).
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Levinsohn and Petrin (2003)

LP equations

I Production function:

yt = β0 + βl lt + βkkt + βmmt + ωt + ηt

I First stage regression:

yt = βl lt + φt (mt , kt) + ηt

with φt (mt , kt) = β0 + βkkt + βmmt + ωt (mt , kt).
I Final regression:

y∗
t = yt − βl lt = β0 + βkkt + βmmt + E [ωt |ωt−1] + η∗

t

where η∗
t = ηt + (ωt − E (ωt |ωt−1)).
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Levinsohn and Petrin (2003)

Invertability

I Just as OP require it (ωt , kt) be an invertible function of productivity,
LP require that input use mt (ωt , kt) is an invertible function of
productivity.

I LP’s monotonicity result relies on easily checked properties of the
production function, and some may find this more appealing than a
result which relies on a Markov perfect equilibrium.

I Unobserved input price variation may be a problem for the LP
invertability condition (but of course it could be for OP, too).
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Levinsohn and Petrin (2003)

Checking invertability
I LP claim that

sign
(
∂m
∂ω

)
= sign (fml flω − fll fmω) .

I To see this, apply the Implicit function theorem to the FOC’s to get(
∂m
∂ω
∂l
∂ω

)
= −

(
fmm fml
flm fll

)−1( fmω

flω

)
.

I Inverting and solving,

⇒ ∂m
∂ω

=
fml flω − fll fmω∣∣∣∣ fmm fml

flm fll

∣∣∣∣ .
I By the second-order condition for profit maximization,

∣∣∣∣ fmm fml
flm fll

∣∣∣∣ must be

negative semidefinite. This means it has exactly two negative eigenvalues,
which means its determinant is positive. Therefore, the numerator controls
the sign.

45 / 95



Levinsohn and Petrin (2003)

Zero inputs

Note: in OP’s industry, it was only 8% zeros.
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Levinsohn and Petrin (2003)

Differences from OP

I LP use a slightly different first stage:
I First, they estimate E (zt |kt) for zt = yt , lu

t , l s
t , et , ft

I They then use no-intercept OLS to estimate:

yt − E (yt |kt ,mt) = βs (l s
t − E (l s

t |kt ,mt))
+βs (lu

t − E (lu
t |kt ,mt))

+βe (et − E (et |kt ,mt))
+βf (ft − E (ft |kt ,mt)) + ηt

I Second stage is similar, but they have to estimate two coefficients
(βm, βk), so they need two moments:

E
(
ξt

(
kt

mt−1

))
= 0
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Levinsohn and Petrin (2003)
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FHS 2008

"Reallocation, Firm Turnover, and Efficiency:
Selection on Productivity or Profitability"
Foster, Haltiwanger, and Syverson (2008)
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FHS 2008

Overview

I They look at some rare industries where quantity data is available,
allowing them to separate physical and revenue productivity

I Findings:
I Physical productivity is inversely correlated with price
I Young producers charge lower prices than incumbents, meaning the

literature understates entrants’ productivity advantages
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FHS 2008

Measurement

I Productivity is measured as follows:

tfpit = yit − αl lit − αkkit − αmmit − αeeit

I Coefficients (α) are just taken from input shares by industry.

I Different measures use different output measures y :
I TFPQ uses physical output
I TFP uses deflated sales (using standard industry-level deflators from

NBER)
I TFPR are sales deflated by mean prices observed in their data

51 / 95



FHS 2008

Correlations
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FHS 2008

Demand

I They estimate a demand system for each industry:

ln qit = α0 + α1pit +
∑

t
αtYEARt + α2 ln (INCOMEmt) + ηit

where INCOMEmt is the income in a firm’s local market m

I They use the residuals from these regressions as a measure of demand
shocks.
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FHS 2008

Persistence
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FHS 2008

Entry and exit
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FHS 2008
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FHS 2008
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De Loecker (2011)

"Product Differentiation, Multiproduct Firms, and Estimating the
Impact of Trade Liberalization on Productivity"

Jan De Loecker (2011)
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De Loecker (2011)

Overview

I Studies effects of trade liberalization on Belgian textiles producers

I Develops strategy to disentangle price and productivity effects

I We see only 2% productivity gains rather than 8% after separating
out price effects.
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De Loecker (2011)

Disappearing Quotas
TABLE I

NUMBER OF QUOTASAND AVERAGE QUOTA LEVELS (IN MILLIONS)

Number of Quota
kg No. of Pieces

Protections No. of Quotas Level No. of Quotas Level

1994 1,046 466 3.10 580 8.58
1995 936 452 3.74 484 9.50
1996 824 411 3.70 413 7.95
1997 857 413 3.73 444 9.28
1998 636 329 4.21 307 9.01
1999 642 338 4.25 304 10.53
2000 636 333 4.60 303 9.77
2001 574 298 5.41 276 11.06
2002 486 259 5.33 227 12.37

Change − 54% − 44% 72% − 60% 44%

I Meanwhile, Belgian textile prices declined by 15%
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De Loecker (2011)

Model

I Cobb-Douglas production function:

Qit = Lαl
it Mαm

it Kαk
it exp (ωit + uit)

I As usual, Qit is not observed, but sales Rit is.

I Assumed demand system:

Qit = Qst

(Pit
Pst

)ηs

exp (ξt)

where Qst is a sectoral aggregate demand shifter
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De Loecker (2011)

Model
I Demand is CES with monopolistic competition for each sector with

markup
(

ηs
ηs+1

)
. Revenue is Rit = QitPit , and at the optimal price,

Rit = Q(ηs+1)/ηs
it Q−1/ηs

st Pst
(
exp (ξit)−1/ηs

)
.

I Expanded revenue equation (in logs):

r̃it = βl lit + βmmit + βkkit + βsQst + ω∗
it + ξ∗

it + uit

where r̃ is log revenue deflated by a Pst .
I Estimating equation:

r̃it = βl lit + βmmit + βkkit + βsQst + δD + τqri t + ω∗
it + uit

where D is a vector of demand-shifting dummy variables and
qrit ∈ [0, 1] is a measure of exposure to quota protection.

I See paper for treatment of multi-product firms
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De Loecker (2011)

Quotas and inversion
I ωit = gt (ωi ,t−1, qri ,t−1) + νit

I Inversion:
ωit = ht (kit ,mit , qrit , qst ,D)

I Checking the monotonicity condition for a static input (as LP) is
straightforward, but verifying the monotonicity of investment (OP) is
harder.

I Estimation based on exclusion restrictions on innovation in
productivity (what was ξ in previous papers but ν here:

E


νi ,t+1 (βm, βk , βs , τ, δ)


mit

ki ,t+1
qst

qri ,t+1
D




= 0
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De Loecker (2011)

Separation

I This framework allows for separate effects of quotas on productivity
through g and demand through τ

I Identifying assumption: protection can only affect productivity with a
lag (note gt (ωi ,t−1, qri ,t−1), while current quota protection can
impact prices through residual demand.
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De Loecker (2011)

Results

TABLE VII I

IMPACT OF TRADE LIBERALIZATION ON PRODUCTIVITYa

Approach Description Estimate Support

I OLS levels − 0.161∗ n.a.
(0.021)

I I .1 Standard proxy-levels − 0.153∗ n.a.
(0.021)

I I .2 Standard proxy-LD − 0.135∗ n.a.
(0.030)

I I I Adjusted proxy − 0.086 [− 0 129 − 0 047]
(0.006)

IV Corrected − 0.021 [− 0 27 0 100]
sd: 0.067

V Corrected LD − 0.046∗∗ n.a.
(0.027)

aI report standard errors in parentheses for the regressions, while I report the
standard deviation (sd) of the estimated nonparametric productivity effect in my
empirical model (given by g(·)). ∗ and ∗∗ denote significant at 5 or lower and 10
percent, respectively. LD refers to a 3 year differencing of a two-stage approach
where Approach I I .2 relies on standard productivity measures, as opposed to Ap-
proach V, which relieson my corrected estimatesof productivity.
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Ackerberg, Caves, and Frazer (2006)

"Structural Identification of Production Functions"
Ackerberg, Caves, and Frazer (2006)
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Ackerberg, Caves, and Frazer (2006)

Overview

I ACF argue that Olley and Pakes’s (1996) and Levinsohn and Petrin’s
(2003) approach suffer from collinearity issues.

I They propose a new approach which involves modified assumptions
on the timing of input decisions and moves the identification of all
coefficients of the production function to the second stage of the
estimation.
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Ackerberg, Caves, and Frazer (2006)

LP’s first stage

I Levinsohn and Petrin’s first-stage regression:

yit = βl lit + f −1
t (mit , kit) + εit .

I LP’s approach was based on the premise that materials inputs are a
variable input and therefore a function of state variables:

mit = mt (ωit , kit) ,

I They also assume that labor is a variable input (or else we would not
be able to exclude it from the inversion), so

lit = lt (ωit , kit) .
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Ackerberg, Caves, and Frazer (2006)

LP’s identification problem

I This means we can write:

yit = βl lt
(
f −1
t (mit , kit) , kit

)
+ f −1

t (mit , kit) + εit ,

and since we’re being nonparametric about f −1
t ,

it should absorb βl lt
(
f −1
t (mit , kit) , kit

)
.

I There should be no variation in lit left over to identify βl .
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Ackerberg, Caves, and Frazer (2006)

Does a parametric inversion help?
I Cobb-Douglas production :

yit = βkkit + βl lit + βmmit + ωit + εit .

I FOC for materials:

βmKβk
it Lβl

it Mβm−1
it eωit =

pm
py
.

I Solving for ω (parametric inversion):

ωit = ln
( 1
βm

)
+ ln

(
pm
py

)
− βkkit − βl lit + (1− βm) mit

I Plugging this into the production function, the βl lit terms cancel:

yit = ln
( 1
βm

)
+ ln

(
pm
py

)
+ mit + εit .

. . . what identifies βl?
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Ackerberg, Caves, and Frazer (2006)

Collinearity in practice and in principle

I It could be the case that lit takes different values in the data for the
same values of (mit , kit). ACF’s argument is about collinearity in
principle, given the assumptions of LP.

I Some potential sources of independent variation:
(Which one works?)

I unobserved variation in firm-specific input prices.
I measurement error in lit or mit
I optimization error in lit or mit

I While optimization error in lit works econometrically, it’s not the most
appealing assumption economically.
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I Some potential sources of independent variation:
(Which one works?)

I unobserved variation in firm-specific input prices.
I measurement error in lit or mit
I optimization error in lit or mit

I While optimization error in lit works econometrically, it’s not the most
appealing assumption economically.
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Another failed solution

I Note that the whole problem comes about because labor and
materials are set simultaneously. This means one way to break the
collinearity is to assume they are set with respect to different
information sets.

I Let’s try to break the informational equivalence with timing
assumptions. Suppose:

I mit is set at time t
I lit is set at time t − b with 0 < b < 1
I ω has Markovian in between subperiods:

p (ωi,t−b|Ii,t−1) = p (ωi,t−b|ωit−1)
p (ωit |Ii,t−b) = p (ωi,t |ωi,t−b)

I But this doesn’t work! And neither does having mit set first. (Why?)
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An implausible solution
I Let’s try again:

I lit is set at time t
I mit is set at time t − b with 0 < b < 1
I we have a more complicated structure of productivity shocks:

yit = βl lit + βmmit + βkkit + ωi,t−b + ηit ,

p (ωi,t−b|Ii,t−1) = p (ωi,t−b|ωi,t−1) ,

I and there is some unobservable shock to labor prices which is realized
between t − b and t. This shock must be i.i.d.

I lit has its own shock to respond to, creating independent variation,
and the productivity inversion still works because the new shock is not
a state variable.

I This works, but as ACF argue, it’s rather ad-hoc and difficult to
motivate.

74 / 95



Ackerberg, Caves, and Frazer (2006)

Collinearity in Olley Pakes
I Olley Pakes’s control function has the same collinearity issue, but

ACF argue it can be avoided with assumptions which "might be a
reasonable approximation to the true underlying process."

I Assume that lit is set at t − b with 0 < b < 1. ω has a Markovian
between subperiods. Then:

lit = lt (ωi ,t−b, kit) ,

so we have variation in lit which is independent of (ωit , kit).

I Note that even though lit is set before investment iit , investment
won’t depend on lit because it is a static input. So the productivity
inversion is unchanged.

I These timing assumptions cannot save LP, but they work well with
OP.
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ACF’s alternative procedure I
I Consider value added production function:

yit = βkkit + βl lit + ωit + εit .

I ACF’s procedure is based on the same timing assumption that "saves"
OP: labor chosen at t − b, slightly earlier than when materials are
chosen at t.

I Point of first stage is just to get expected output:

yit = Φt (mit , kit , lit) + εit

where
Φt (mit , kit , lit) = βkkit + βl lit + f −1

it (mit , kit , lit)

... first stage no longer recovers βl .
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ACF’s alternative procedure II

I After the first stage, we have Φ̂it , expected output.

I We can construct a measure of productivity given coeffiencts:

ω̂it (βk , βl ) = Φ̂it − βkkit − βl lit

I Then, non-parametrically regressing ω̂it (βk , βl ) on ω̂i ,t−1 (βk , βl ), we
can construct the innovations:

ξ̂it (βk , βl ) = ω̂it (βk , βl )− E (ω̂it (βk , βl ) |ω̂i ,t−1 (βk , βl ))
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ACF’s alternative procedure III

I Estimation relies on the following moments:

T −1N−1∑
t

∑
i
ξ̂it (βk , βl )

(
kit

li ,t−1

)

I In the second stage, these two moments are used to estimate both βk
and βl .

I In ACF’s framework, lit isn’t a function of ωit but of ωi ,t−b. However,
labor will still be correlated with part of the innovation in
productivity, so we still need to use lagged labor in the moments.

I The moment with lagged labor is very much in the spirit of OP and
LP, and they actually used it as an overidentifying restriction.
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Comments

I The approach also works with an investment proxy,.

I Wooldridge (2009) proposes estimating the first and second stages
together. This makes computation of standard errors easier (standard
GMM formulas rather than boostrap), and it improves efficiency.
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"On the Identification of Production Functions:
How Heterogeneous is Productivity?"
Gandhi, Navarro, and Rivers (2006)
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Overview

I A bit like ACF’s critique of OP and LP, GNR argue that past
approaches suffer from non-identification.

I The fundamental issue here is the simultaneity of flexible inputs. In a
sense, we’re still dealing with Marschak and Andrews (1944).

I They argue that ACF’s “solution” merely moves the non-identification
problem. While implementing ACF’s approach with value-added
production seems to avoid simultaneity, using value added production
creates a misspecification problem.

I Instead, they suggest using first-order conditions from profit
maximization for identification – i.e., consider the system of
simultaneous equations instead of only the production function.

I “nonparametric analogue of revenue shares directly identifying the
intermediate input coefficient in a Cobb-Douglas setting”
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Setup
I Consider a gross output production function (in logs):

yit = f (lit , kit ,mit) + ωit + εit

I Assumptions:
I Kit and Lit are determined at (or prior to) period t − 1. Mit is

determined flexibly at period t
I Intermediate inputs can be written as Mit (Ljt ,Kit , ωit), strictly

monotone in (Lit ,Kit).
I ω is Markovian with evolution function Pω (ωit |ωi,t−1).
εit is iid and not in the information set at time t.

I These assumptions basically describe the modern framework for
thinking about production function estimation. GNR claim that they
are not enough to identify f .
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Intuition for identification issue
I ht (lit , kit ,mit) = ωit ,

gt (ωi ,t−1) = E (ωi ,t |ωi ,t−1), and
ξit = ωit − gt (ωi ,t−1).

yit = f (lit , kit ,mit) + gt (ht−1 (li ,t−1, ki ,t−1,mi ,t−1)) + ξit + εit

mit = mt (lit , kit , gt (ht (li ,t−1, ki ,t−1,mi ,t−1)) + ξit)

I The simultaneity problem comes from the fact that that mit responds
to ξit . But there is no instrument for mit which is both valid and
relevant:

I variation in (lit , kit) won’t help identify effect of mit if we’re being
flexible about the functional form of f ;

I variation in (li,t−1, ki,t−1,mi,t−1) won’t help if we’re being flexible
about the functional form of ht .

I the only other thing that shifts m is ξ
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Using FOCs from profit maximization I

I FOC for optimal choice of intermediate inputs:

pytFM,t (Lit ,Kit ,Mit) eωitE = pmt

where FM,t = ∂Ft
∂M and E = E (eεit ).

I Note: this is a static profit maximization assumption... is this
innocent? natural?

I We can form a system of equations with the production function:

ln pmt = ln pyt + lnFM,t (Lit ,Kit ,Mit) + ln E + ωit

yit = ft (Lit ,Kit ,Mit) + ωit + εit .
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Using FOCs from profit maximization II
I We can form a system of equations with the production function:

ln pmt = ln pyt + lnFM,t (Lit ,Kit ,Mit) + ln E + ωit

yit = ft (Lit ,Kit ,Mit) + ωit + εit .

I Differencing and adding mit to both sides:

ln mitpmt
yitpyt

= sm
it = lnGt (Lit ,Kit ,Mit) + ln E − εit

where sm
it is materials expenditure as a share of revenue, and Gt is the

elasticity of output with respect to Mit :

Gt =
FM,t (Lit ,Kit ,Mit) Mit

Ft (Lit ,Kit ,Mit)
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Using FOCs from profit maximization III

I The basic idea is that the input expenditure share,

ln sm
it = ln mitpmt

yitpyt
,

gives us information about how the production function depends on
mit .

I Notice that for a Cobb-Douglas production function,

ln sm
it = βm + εit ,

and βm is the coefficient not identified by the ACF approach, so the
idea is just to get it off the share.
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Value added production

I It is fairly common in practice to estimate a value added production
function:

yit = f (lit , kit) + ωit + εit

where yit is a measure of value added rather than gross output.

I Because materials are no longer on the right hand side, this seems to
avoid GNR’s non-identification argument – we don’t need an
instrument for m if it is not an argument of the function we’re trying
to estimate.

I The concerns here: what is value added? and does it even make sense
estimate a value added production function?

I Most common: yit = Rit −mit , i.e., value added is sales net of
materials expenditure

I Structural value added (on board)
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Dynamic Panel Data Estimators

Quick Review of Dynamic Panel Data Estimation
Arellano and Bond (1991), Blundell and Bond (1998, 2000)
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DP Setup

I Production function with fixed effects:

yit = βLlit + βK kit + αi + ωit + ηit

where xt = (lt , kt), ωit is the productivity term, and ηit is
measurement error.

I Note: to justify standard fixed effects estimator, we have to assume
that input choices are exogenous to ωit – i.e., simultaneity is only
allows with respect to the fixed effect.

I Dynamic panel data methods are an alternative to control function
approaches for dealing with simultaneity.
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DP Example

I Write the production function in first differences, getting rid of the
fixed effect αi :

∆yit = βL∆lit + βK ∆kit + ∆ωit + ∆ηit

I Suppose that
I lit = l (li,t−1, ki,t−1, ωit)
I kit = k (li,t−1, ki,t−1, ωit)

I If there is non-trivial serial correlation in the inputs, and no serial
correlation in ω, then lagged inputs can be used as instruments.

I This DP approach can also handle some serial correlation in ω, but
only if ω follows a Markov process with a linear form, like an AR1
(see ACF discussion for details).
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Brief comparison

Advantages of DP methods:
I Can handle fixed effects.
I Does not rely on invertibility of input demand functions.

Disadvantages of DP methods:
I Selection bias from entry and exit.
I Potential weak instrument problems.
I Often leads to low estimates of βl and βk – same problem as standard

fixed effects estimator killing the signal/noise ratio.
I Does not separate productivity from idiosyncratic error.
I GNR critique (simultaneity) applies: need to have quasi-fixed inputs

for DP method to be identified.
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Weak instruments

I Let’s consider the problem with a simple production function
involving only labor as an input:

yit = βlit + αi + ωit + εit

I The standard Arellano-Bond estimator would take first differences,

∆yit = β∆lit + ∆ωit + ∆εit ,

and use lit as an instrument for ∆lit = xit − xi ,t−1.
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Weak instruments

I To avoid the problem of small-sample bias with weak instruments, we
want a strong fit between ∆lit and li ,t−2. We’re in trouble if lit is too
variable or too persistent. Suppose labor inputs evolve according to
the following process:

lit = ρli ,t−1 + λ1αi + λ2ωit

I If ρ ≈ 0, there is little serial correlation in lit , lagged values are simply
not relevant predictors.

I If ρ ≈ 1, then lagged values are relevant predictors for future levels,
but we have a random walk and ∆lit is approximately i.i.d.

I ⇒ it’s easy to fall into a weak instruments trap here since we’re
hoping for an intermediate amount of persistence in the explanatory
variable. Too much or too little is trouble.
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Dealing with weak instruments
I An idea from Arellano and Bover (1995) and Blundell and Bond

(1998) is to use another set of moments.
I The Arellano and Bond (1991) baseline is instrumenting for differences

using lagged levels:

E [xi,t−2 (∆ωit∆εit)] = 0

I The new idea is instrumenting for levels using lagged differences:

E [∆xi,t−1 (αi + ωit + εit)] = 0

I The second set of moments capture more cross-sectional variation in
output – note that the fixed effect typically explains most of the
cross-sectional variation.

I Blundell and Bond (2000) argue that using both sets of moments
leads to much more plausible parameter estimates.
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