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Magnac and Thesmar (2002)

"Identifying Dynamic Discrete Decision Processes"
Magnac and Thesmar (2002)
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Magnac and Thesmar (2002)

Setup

I x ∈ X - state variables
I pi (x) - choice probabilities (data)
I ui (x) - per-period utility from action i in state x
I vi (x) - conditional value function of action i in state x
I K - the reference action
I G - distribution of conditionally independent shocks
I q - the Hotz-Miller inversion function. i.e., qi (p (x)) = vi (x)− vK (x)

I R - the surplus function, R (v ;G) = EG (maxi {vi + εi})
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Magnac and Thesmar (2002)

Lemma 1

Lemma 1 is basically a convenient restatement of the Hotz Miller inversion.

Lemma 1
For any action j and state x ,

uj (x) = uK (x) + qj (p (x) ;G)
−β (E [vK (x ′) |x , j]− E [vK (x ′) |x ,K ])
−β (E [R (q (p (x ′) ;G)) |x , j]− E [R (q (p (x ′) ;G)) |x ,K ])
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Magnac and Thesmar (2002)

Lemma 1, example

Let’s derive Lemma 1 for the case of logit errors.

ln
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)
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)
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(
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Magnac and Thesmar (2002)

Lemma 1

Proposition 2
Let C = {c|c = (β,G , uK (·) , vK (·))}.
(i) For a given c ∈ C , there exists one vector (u1 (·) , . . . , uK−1 (·))
compatible with p (X ).
(ii) Let u be the (u1 (·) , . . . , uK−1 (·)) vector associated with c and let u′
be associated with c ′ 6= c. Then, (u, c) and (u′, c ′) are observationally
equivalent.

Thus, there is an observationally equivalent model associated with each
element of C = {c|c = (β,G , uK (·) , vK (·))}
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Magnac and Thesmar (2002)

Restrictions for identification

I It’s common to do something like assuming uK (x) = 0 for all x

I This is not innocent. Note that restricting u (x) = 0 for a single x is
an innocent normalization, but restricting payoffs to be flat across
states is a substantive assumption.

I Sometimes such restrictions are very natural. Think about what the
restriction is in Rust (1987).
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Magnac and Thesmar (2002)

Identifying the discount factor

Idea behind Magnac and Thesmar’s Proposition 4:

I Suppose you have different values of state variables which give the
same current profits, but have different expectations for future values
of the state variables.

I e.g., perhaps we observe both current and futures prices

I In this case, one can identify the discount factor because we have
something that shifts continuation values rather than shifting both
current profits and continuation values.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

"Identification of Counterfactuals in Dynamic Discrete Choice Models"
Kalouptsidi, Scott, and Souza-Rodrigues (2016)
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

The need for restrictions

Consider a utility function π (a, s) where a is an action selected from some
discrete set and s is a state variable.

I In static model, normalizing π (J , s) = 0 for some action J , and all
states s is harmless.

I In a dynamic model, this is not harmless in general; profits in state s ′
affect incentives in state s.

I Unfortunately, identification of DDC models requires a normalization
like this or other restrictions (Magnac and Thesmar, 2002).

I However, it’s not clear that counterfactuals are under-identified in the
same way. It could be the case that every model consistent with the
data produces the same counterfactual behavior.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

“the entire dynamic discrete choice project thus appears to be without
empirical content, and the evidence from it at the whim of investigator
choices about functional forms of estimating equations and application of
ad hoc exclusion restrictions.”
– Heckman and Navarro (2007)
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Literature

I Recently, some papers have explored when counterfactuals are
identified, offering cases that are and that aren’t: Aguirregabiria
(2010), Norets and Tang (2014), Arcidiacono and Miller (2015),
Aguirregabiria and Suzuki (2014).

I Kalouptsidi, Scott, and Souza-Rodrigues offer a characterization
(necessary and sufficient conditions), providing results that one can
use to check whether virtually ever counterfactual in the literature is
identified.

I In the subsequent slides, I offer proofs of relevant special cases which
are simpler than the proofs in any of these papers.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Identification of Counterfactuals

I A counterfactual can involve a change in the utility function, π → π̃:

π̃ = h (π) ,

where h is some differentiable function, and a change in the transition
matrix F → F̃

I We say that a counterfactual is identified if all utility functions
consistent with observed data all generate the same counterfactual
CCPs p̃.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Result 1: Lump sum transfers

Result

In a single-agent setting, if F̃ = F and π̃ = π + g, where g is a known
vector, then counterfactual choice probabilities p̃ are identified.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Result 2: Changes in transition process

Result

In a single-agent setting, if a counterfactual changes the transition process
from F to F̃ , but the utility function is unchanged, then counterfactual
choice probabilities p̃ are not identified unless

(I − βFa) (I − βFJ)−1 −
(
I − βF̃a

) (
I − βF̃J

)−1
= 0 (1)

for all a 6= J, where Fa ∈ RX×X is the transition matrix conditional on
action a, and I is an identity matrix of size X.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Value functions

Define the ex ante value function, which represents the expectation of the
value function before idiosyncratic shocks are realized:

V (xit) ≡
ˆ

V (xit , εit) dG (εit) ,

and the conditional value function, which represents the expected
discounted payoffs conditional on particular action before the realization of
idiosyncratic shocks:

va (xit) ≡ u (a, xit) + βE [V (xit+1) |a, xit ] .
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

CCPs

The agent’s optimal policy is given by the conditional choice probabilities
(CCPs):

pa (xit) =

ˆ
1 {va (xit) + εit (a) ≥ vj (xit) + εit (j) , for all j ∈ A} dG (εit)

where 1 {·} is the indicator function. Let p be the vector of CCPs, pa (xit)
with a ∈ A and x ∈ X .
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Relationships

Some important relationships:

πa = va − βFaV , for a = 1, ...,A (2)

va − vj = σφaj , for a = 1, ...,A, a 6= j (3)

V = va + σψa, for a = 1, ...,A, (4)

where πa, va,V , φaj , ψa ∈ RX , with πa (x) = π (a, x); Fa is the transition
matrix with (m, n) element equal to Pr (xit+1 = xn|a, xit = xm). Equation
(2) defines the conditional value function; (3) restates the Hotz-Miller
lemma; and (4), the Arcidiacono-Miller lemma.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

One more relationship

Combining the above relationships, we can represent the
under-identification problem in terms of a “strong normalization”

Lemma 1

Let J ∈ A be some reference action. For each a 6= J , the payoff function
πa can be represented as an affine transformation of πJ :

πa = AaπJ + ba, (5)

where Aa = (I − βFa) (I − βFJ)−1 and ba = σ (AaψJ − ψa).
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Lemma 1
Fix the vector πJ ∈ RX . Then,

πa = va − βFaV = V − σψa − βFaV = (I − βFa)V − σψa

where for a = J
V = (I − βFJ)−1 (πJ + σψJ) .

After substituting for V , we have

πa = (I − βFa) (I − βFJ)−1 (πJ + σψJ)− σψa.

(I − βFJ) is invertible because FJ is a stochastic matrix and hence the
largest eigenvalue is equal or smaller than one. The eigenvalues of
(I − βFJ) are given by 1− βλ, where λ are the eigenvalues of FJ . Because
β < 1 and λ ≤ 1, we have 1− βλ > 0.
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Results 1-2

Write out the definition of the conditional value function in vector
notation,

va = πa + βFaV ,

and then use Arcidiacono and Miller’s Lemma to substitute for the ex ante
value function V :

va = πa + βFa (va + ψa (p)) .

This allows us to express the conditional value in terms of the payoff
function and transition matrix:

va = (I − βFa)−1 (πa + βFaψa (p)) . (6)
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Results 1-2

I Write out that equation for two different actions, a and J , and apply
Lemma 1:

va = (I − βFa)−1 (AaπJ + ba (p) + βFaψa (p)) ,

vJ = (I − βFJ)−1 (πJ + βFJψJ (p)) .

(7)

I Difference and apply the HM inversion:

ψJ (p)− ψa (p) = (I − βFa)−1 (AauJ + ba (p) + βFaψa (p))

− (I − βFJ)−1 (uJ + βFJψJ (p)) .
(8)
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Results 1-2

I This equation should also hold for the counterfactual utility function
h (π) and transation matrix F̃ :

ψJ (p̃)− ψa (p̃) =
(
I − βF̃a

)−1 (
ha (π) + b̃a (p̃) + βF̃aψa (p̃)

)
−
(
I − βF̃J

)−1 (
hJ (π) + βF̃JψJ (p̃)

)
I This allows us to see both Results 1 and 2 . . .
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Result 1

I To see result 1, plug in
ha (π) = πa + ga
hJ (π) = πJ + gJ
πa = AaπJ + ba

ψJ (p̃)− ψa (p̃) = (I − βFa)−1 (AaπJ+

ba (p) + ga + b̃a (p̃) + βFaψa (p̃)
)

− (I − βFJ)−1 (πJ + gJ + βFJψJ (p̃))

noting that F̃ = F for the counterfactuals of Result 1.
I Recall that Aa = (I − βFa) (I − βFJ)−1
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Result 1

ψJ (p̃)− ψa (p̃) = (I − βFa)−1 (AaπJ+

ba (p) + ga + b̃a (p̃) + βFaψa (p̃)
)

− (I − βFJ)−1 (πJ + gJ + βFJψJ (p̃))

I Recall that Aa = (I − βFa) (I − βFJ)−1, implying

ψJ (p̃)− ψa (p̃) = (I − βFJ)−1 AaπJ+

(I − βFJ)−1
(
ba (p) + ga + b̃a (p̃) + βFaψa (p̃)

)
− (I − βFJ)−1 (πJ + gJ + βFJψJ (p̃))
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Kalouptsidi, Scott, and Souza-Rodrigues: single agent

Proof of Result 1
I The πJ terms cancel, leaving us with

ψJ (p̃)− ψa (p̃) = (I − βFJ)−1
(
ba (p) + ga + b̃a (p̃) + βFaψa (p̃)

)
− (I − βFJ)−1 (gJ + βFJψJ (p̃))

I Thus, the equation that counterfactuals CCPs p̃ must satisfy does not
depend on πJ , meaning any “normalization” will result in the same
counterfactual behavior.

I For Result 2, the fact that F̃ 6= F means that the πJ term does not
cancel out unless the transition matrices satisfy the special condition
described in the theorem. When the counterfactual changes F , the
condition p̃ must satisfy depends on the value of πJ , and so the
counterfactual behavior is sensitive to “normalizations.”
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Kalouptsidi, Scott, and Souza-Rodrigues: games

"On the Non-Identification of Counterfactuals in Dynamic Games"
Kalouptsidi, Scott, and Souza-Rodrigues (2016)
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Kalouptsidi, Scott, and Souza-Rodrigues: games

An entry game

I Let’s consider a dynamic entry game introduced by Pesendorfer and
Schmidt-Dengler.

I Two players indexed by i = A,B
I In each period t, the players simultaneously choose whether to be

active in the market (ait = 1) or not (ait = 0)
I state variable which equals the player’s action in the previous period:

sit = ai ,t−1
I The state of the game is simply the pair of states, xt = (sAt , sBt),

which is common knowledge
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Kalouptsidi, Scott, and Souza-Rodrigues: games

Payoffs
I As a baseline case, we consider the following payoff function:

ui (ai , a−i , si , s−i ) =



0 if ai = 0, si = 0
φ if ai = 0, si = 1
π1 − c if ai = 1, si = 0, a−i = 0
π1 if ai = 1, si = 1, a−i = 0
π2 − c if ai = 1, si = 0, a−i = 1
π2 if ai = 1, si = 1, a−i = 1

I A symmetric equilibrium for this model: each player enters with
probability .576 when both players were not active in the previous
period. Each player remains active with probability .595 when both
players competed previously. When only one player was active
previously, the incumbent remains active with probability .842 and the
other firm enters with probability .305.

I We also consider another payoff function which is consistent with the
same baseline equilibrium.

34 / 36



Kalouptsidi, Scott, and Souza-Rodrigues: games

Table: Entry Game: Payoff Functions

π (ai , ai , si , s−i ) Model 1 Model 2
(ai , a−i ) = (ai , a−i ) =

si s−i (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1)
0 0 0 0 1 -1.4 0 0 0 -0.506
0 1 0 0 1 -1.4 0 0 0 -1.11
1 0 0.1 0.1 1.2 -1.2 0 0 0 1.51
1 1 0.1 0.1 1.2 -1.2 0 0 0 -0.399
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Kalouptsidi, Scott, and Souza-Rodrigues: games

Table: Entry Game: Payoff Functions

P (active|si , si ) Baseline CF – fixed opponent CF – equilibrium
Model 1 Model 2 Model 1 Model 2

si s−i
0 0 0.576 0.527 0.527 0.634 0.516
0 1 0.305 0.257 0.257 0.207 0.243
1 0 0.842 0.875 0.875 0.983 0.836
1 1 0.595 0.643 0.643 0.692 0.612
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