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Timmins (2002)

“Measuring the Dynamic Efficiency Costs of Regulators’ Preferences:
Municipal Water Authorities and the Arid West”

Christopher Timmins (2002)
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Timmins (2002)

Groundwater extraction

I In many counties in California, aquifers are the primary water source.

I Groundwater must be pumped to the surface, and the cost depends
on the water level. As the aquifer is depleted, the cost of extaction
increases.

I There is typically one utility company responsible for the extraction
and distribution of water, and rates are controlled by the government.
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Timmins (2002)

Dynamic costs

I Because water extraction today makes extraction tomorrow more
expensive, it woud not be optimal to set the current price equal to the
current cost of extraction.

I Timmins defines a dynamic marginal cost:

MC ′1991 = MC1991 + E1991

[ ∞∑
t=1992

βt−1991 ∂C ′t
∂D1991

]

I However, water in California is typically priced well below marginal
cost.
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Timmins (2002)

Questions

I How is water priced? (What is the regulator’s objective function?)

I How would economic surplus be improved if water were priced
efficiently in a static sense? In a dynamic sense?
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Timmins (2002)
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Timmins (2002)
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Timmins (2002)

Model

I Demand:

D = exp
[
δ0 + δ1P + δ2Inc + δ3R + δ4S + εd

]
where P is price, Inc is income, R is rainfall, and S is a proxy for
population. Note: infinite marginal utility as D → 0, and zero
marginal utility at finite level of consumption.

I Extraction costs:

C = hα1Dα2 exp [α0 + εc + ξ]

where h is aquifer height,
I εc is measurement error (not obervable to regulator)
I ξ is a cost shock observable to the regulator, but not to the

econometrician
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Timmins (2002)

Dynamics

I Aquifer height is the endogenous state variable, which evolves as
follows:

ht+1 = γ1ht + γ2Dt + γ3Rt + εht
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Timmins (2002)

Regulator behavior
I The regulator has weighted welfare function:

π (P, ξ) ≡ E
[
νCS

(
P, εd

)
− (1− ν) TR

(
P, εd , εc , ξ

)]
I where CS is consumer surplus:

CS
(
P, εd

)
≡
ˆ ∞

P
D
(
εd , p

)
dp

I and TR is net revenues:

TR
(
P, εd , εc , ξ

)
≡ P · D

(
εd ,P

)
− C

(
D
(
εd ,P

)
, εc , ξ

)
I The regulator is assumed to maximize

E
[ ∞∑
τ=1

βτπt+τ

]
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Timmins (2002)

Estimation I

I The equations for demand, costs, and aquifer height are estimated in
a first stage:

ln (Dit) = δ0 + δ1Pit + δ2Incit + δ3Rit + δ4Sit + εdit

ln (Cit) = α1 ln (hit) + α2 ln (Dit) + ξit + εcit

hi ,t+1 = γ1hit + γ2Dit + γ3Rit + εhit

I Note: in the second equation, ξit and Dit may be correlated, so we
can’t just use OLS

I Evolution of R and S also estimated in a first stage.
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Timmins (2002)

Estimation II

I Estimation of the remaining parameters (including the welfare weight
ν and the variance of ξ) is done using a nested fixed point algorithm.

I This involves solving the dynamic problem for each candidate
parameter. Outer loop is maximum likelihood.
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Timmins (2002)
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Timmins (2002)
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Timmins (2002)

Results and Counterfactuals

I Timmins find that each dollar of net taxes spent subsidizing water
results in 0.45 of consumer surplus.

I He considers three possible paths:
I Business as usual
I Static surplus maximization (ν = .5, β = 0)
I Dynamic surplus maximization ( (ν = .5, β = .95)
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Timmins (2002)
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Timmins (2002)
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Bajari, Benkard, and Levin (2012)

“Estimating Dynamic Models of Imperfect Competition”
Bajari, Benkard, and Levin (2012)
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Bajari, Benkard, and Levin (2012)

Overview

I A simulation-based approach to estimating dynamic games;
essentially the same as Hotz, Miller, Sanders, and Smith (1994)

I A two-step approach
1. Estimate what firms do – estimate policy functions
2. Explain why they do it – find parameters that rationalize policies as

best responses
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Bajari, Benkard, and Levin (2012)

Model

I Firms i = 1, . . . ,N
I State variable st ∈ S
I Actions ait ∈ Ai
I Private i.i.d. payoff shocks νit with known distribution G
I Per-period payoff functionπi (ait , st , νit ; θ)

I State transition process P (st+1|st , at)

I Firms maximize expected discounted profits:

E
[ ∞∑
τ=t

π (aiτ , sτ , νiτ ; θ) |st

]
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Bajari, Benkard, and Levin (2012)

Model: Ryan (2012)

I Application to understand impact of regulation of cement industry
I Actions include a quantity decision (Cournot game), capacity

investments, entry, and exit

I State variable is the capacities of active firms.
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Bajari, Benkard, and Levin (2012)

First stage

I Estimate policy function σi (s, ν)

I Estimate state transition process P (st+1|st , at)

I Both can be done non-parametrically

I We directly estimate σi (s, ν) as a probability, not as a function of the
idiosyncratic error ν. Typically, strategies will follow a cutoff rule in ν,
and given a distributional assumption on ν, we can back out the
cutoffs from the probabilities.

I Multiplicity ignored. Using data from just a single market, no
equilibrium selection is needed. Using data from multiple markets, we
need to assume that they are all in the same MPE.
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Bajari, Benkard, and Levin (2012)

Forward simulation

Value function given strategy profile:

Vi (st , σ; θ) = E
[ ∞∑
τ=t

πi (σi (sτ , νiτ ) , sτ , νiτ ; θ) |st

]

Simulation allows us to approximate the expectation over this sum. Our
estimate of V will be an average over a large number of simulations S
with a large number of periods T approximating the infinite sum.

1. Start at a given state s0 = s, draw private shocks from distribution G
2. Calculate the action ai0 = σi (s0, νi0) for each agent i
3. Draw a new state s1 using transition probabilities P (s1|s0, a0)

4. Repeat steps 1-3 for large number of periods T (or until each player
reaches a terminal state)
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Bajari, Benkard, and Levin (2012)

Linearity

I Having a linear profit function,

πi (a, s, νi ; θ) = Ψ (a, s, νi ) · θ

simplifies the computational burden of forward simulation dramatically

I Ultimately, we want to compute value functions based on the
simulations. Linearity allows us to write:

Vi (st , σ; θ) = E
[ ∞∑
τ=t

πi (σi (sτ , νiτ ) , sτ , νiτ ) · θ|st

]
= Wi (st , σ) · θ

I In this case, we only need the simulation to calculate W , and then we
can just multiply W by θ in order to evaluate V for different
parameters.
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Bajari, Benkard, and Levin (2012)

Estimation

I Vi (s, σ̂i , σ̂−i ; θ) is the estimated value function for the estimated
strategy profile (which should be approximately the true equilibrium
strategy profile).

I Vi (s, σ̃i , σ̂−i ; θ) is the estimated value function for a deviation from
the equilibrium strategy:

I Main idea behind BBL’s estimator: we want

Vi (s, σ̂i , σ̂−i ; θ) ≥ Vi (s, σ̃i , σ̂−i ; θ)

for all σ̃i
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Bajari, Benkard, and Levin (2012)

Estimator

I Differences:

g (x ; θ) = Vi (s, σ̂i , σ̂−i ; θ)− Vi (s, σ̃i , σ̂−i ; θ)

where x denotes a combination of i , s, and σ̃i .

I Objective function:

Q (θ) =
∑
x∈X

(min {g (x ; θ) , 0})2

where X is some large set of possible deviations
I θ̂ = minθ Q (θ)
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Bajari, Benkard, and Levin (2012)

Results: Ryan (2012)

I Ryan allows fixed costs, entry costs, scrap values, and equilibrium
behavior to differ before and after regulations were implemented in
1990.

I He has data from 1980-1999, which isn’t a lot given the richness of
the state space. What allows him to estimate the model is having
many regional markets (assumed to all share the same MPE)

I Main findings: regulation increases entry costs, leading to greater
concentration
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Fowlie, Reguant, and Ryan (2014)

“Market-Based Emissions Regulation and Industry Dynamics”
Meredith Fowlie, Mar Reguant, and Stephen Ryan (2014)
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Fowlie, Reguant, and Ryan (2014)

Cement

I Cement production is a major GHG contributor (5% of global
emissions), and a (moderate) tax of $40/ton of carbon would double
variable costs of production.

I Motivation: regulation could lead to changes market power, and
leakage may limit the effectiveness of regulation imposed within a
single market.
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Fowlie, Reguant, and Ryan (2014)

Model

I Model is much like Ryan (2012), but augmented with a model of
imports:

Local demand: lnQm = α0m + α1 lnPm

Import supply: lnMm = ρ0 + ρ1 lnPm

I They ignore several potential mitigation methods (switching to new
technologies and potentially switching fuel sources) because such
switches are not observed in the data. However, entrants will enter
with state-of-the art technology.
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Fowlie, Reguant, and Ryan (2014)

Counterfactuals

I They consider different policy designs: emissions permit auctioning,
grandfathering, dynamic allocation updating, and a border tax
adjustment

I For each policy regime, they compute the optimal carbon price, given
an assumed social cost of carbon.
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Fowlie, Reguant, and Ryan (2014)
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Fowlie, Reguant, and Ryan (2014)
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