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Timmins (2002)

“Measuring the Dynamic Efficiency Costs of Regulators' Preferences:
Municipal Water Authorities and the Arid West”
Christopher Timmins (2002)
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Timmins (2002)

Groundwater extraction

» In many counties in California, aquifers are the primary water source.

» Groundwater must be pumped to the surface, and the cost depends
on the water level. As the aquifer is depleted, the cost of extaction
increases.

> There is typically one utility company responsible for the extraction
and distribution of water, and rates are controlled by the government.



Timmins (2002)

Dynamic costs

» Because water extraction today makes extraction tomorrow more
expensive, it woud not be optimal to set the current price equal to the
current cost of extraction.

» Timmins defines a dynamic marginal cost:

1 0C

MCigg; = MCigo1 + Erger | Y B Droon

t=1992

» However, water in California is typically priced well below marginal
cost.
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Questions

» How is water priced? (What is the regulator’s objective function?)

» How would economic surplus be improved if water were priced
efficiently in a static sense? In a dynamic sense?
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Timmins (2002)
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Timmins (2002)

TABLE 1

MARGINAL COSTS AND PRICES, AVERAGES By CITY
(CONSTANT 1982-84 DOLLARS)

City Obs MC; = Pi (MCj = Pi )/MC;
Clovis 16 19.67+* 0.087
Delano 15 118.60* 0.818
Dinuba 15 97.69* 0.406
Exeter 22 47.74* 0.468
Firebaugh 14 174.40* 1.000
Fresno 19 124.99* 1.000
Hanford 21 65.15* 0.449
Kerman 6 109.44* 1.000
Madera 16 124.46* 1.000
Mendota 15 101.50* 0.446
Reedley 17 171.14* 1.000
Sanger 16 43.88* 0.410
Shafter 15 120.61* 1.000

Notes: *** indicates statistical significance at the 10% level, ** indicates significance at the 2.5% level, and
* indicates significance at the 0.5% level. All figures are reported in constant 1982-84 dollars.
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Timmins (2002)

Model
» Demand:

D = exp [50 + 61P + Solnc + 53R + 854S + €@

where P is price, Inc is income, R is rainfall, and S is a proxy for
population. Note: infinite marginal utility as D — 0, and zero
marginal utility at finite level of consumption.

» Extraction costs:

C = h"D%explag + € +£]

where h is aquifer height,

» €° is measurement error (not obervable to regulator)

» ¢ is a cost shock observable to the regulator, but not to the
econometrician
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Dynamics

» Aquifer height is the endogenous state variable, which evolves as
follows:
hev1 = v1he + 72D¢ + 3R + €]
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Timmins (2002)

Regulator behavior

» The regulator has weighted welfare function:

T (P, &) = E[ycs (P,ed) —(1-v) TR( € 5)}

» where CS is consumer surplus:

() (P,ed> = /OO D (ed,p> dp
P

» and TR is net revenues:
TR(P,e,c,¢) = P-D(e?,P) — € (D (e, P) ,€,€)

» The regulator is assumed to maximize

E [Z ymT]
T=1
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Timmins (2002)

Estimation |

» The equations for demand, costs, and aquifer height are estimated
a first stage:

In (D/t) = 0g + 01Pit + dzlncit + 03Rit + 945+ + 6%
In (C,'t) = o In (h;t) —+ apn In (D;t) + {it + El-ct

hi,t+1 = ~v1hit + 72Dt +v3Rit + 6,’-}

» Note: in the second equation, &;; and D;; may be correlated, so we
can't just use OLS

» Evolution of R and S also estimated in a first stage.

in
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Timmins (2002)

Estimation I

» Estimation of the remaining parameters (including the welfare weight
v and the variance of &) is done using a nested fixed point algorithm.

» This involves solving the dynamic problem for each candidate
parameter. Outer loop is maximum likelihood.
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Timmins (2002)

TABLE IV
FIRST-STAGE PARAMETER ESTIMATES?
(A =DEMAND, B = Lirr-HEIGHT LAW OF MOTION,
C =PumrING CosTs, D = NONPUMPING COSTS)

Standard
Variable Coefficient Error
A: Constant 7.27 0.17
Price 7.49 %10 297 %1073
Virtual Income 4.03x10° 9.74 % 10-¢
Rainfall 1.20x 104 5.37x10°
Connections 1.70 x 104 1.43x10°°
B: Lift-Height (—1) 0.97 1.32x 102
Constant 0.80 255
Extraction 6.35x 10 2.05x 10
Artificial Recharge 473 %10 2.28x 10
Rainfall (-1) 0.01 1.03x 1073
AVG 0.77 0.18
C: Constant —1.66 0.89
Lift-Height 1.09 0.18
Extraction 1.18 7.08 %1072
D: ¢ 80.02 6.21
CClois —15.37 11.60
Chinuba 110.83 22.75
Crreter —32.24 9.06
Crirebaugh 24.19 13.88
CKerman —-17.59 12.45
Chfadera —18.58 7.73
Chfendora 58.75 25.36
CSanger —14.73 10.75
CShafier —27.00 16.20
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Timmins (2002)

TABLE V
NESTED FIXED-POINT ESTIMATION ALGORITHM PARAMETER
EsTiMATES B=0.95, n =116, LoG-LIKELIHOOD = —2209.16

Parameter Estimate Standard Error
v 0.73 544 %107
Po —20.00 24.33
Py 0.58 0.23
7 135.00 28.46
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Timmins (2002)

Results and Counterfactuals

» Timmins find that each dollar of net taxes spent subsidizing water
results in 0.45 of consumer surplus.

» He considers three possible paths:
» Business as usual
» Static surplus maximization (v = .5, § =0)
» Dynamic surplus maximization ( (v = .5, 8 = .95)

16
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Timmins (2002)
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Bajari, Benkard, and Levin (2012)

“Estimating Dynamic Models of Imperfect Competition”
Bajari, Benkard, and Levin (2012)
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Bajari, Benkard, and Levin (2012)

Overview

» A simulation-based approach to estimating dynamic games;
essentially the same as Hotz, Miller, Sanders, and Smith (1994)

» A two-step approach
1. Estimate what firms do — estimate policy functions
2. Explain why they do it — find parameters that rationalize policies as
best responses
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Bajari, Benkard, and Levin (2012)

Model

» Firmsi=1,....N

» State variable s; € S

» Actions a; € A;

» Private i.i.d. payoff shocks v;; with known distribution G
» Per-period payoff functionm; (ajt, s, Vit; 0)

» State transition process P (s¢t1]|st, at)

» Firms maximize expected discounted profits:

00
E Z ™ (aiT7 Sty Vir, 0) ‘st
T=t
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Bajari, Benkard, and Levin (2012)

Model: Ryan (2012)

» Application to understand impact of regulation of cement industry

» Actions include a quantity decision (Cournot game), capacity
investments, entry, and exit

» State variable is the capacities of active firms.



Bajari, Benkard, and Levin (2012)

First stage

v

Estimate policy function o; (s, v)
» Estimate state transition process P (St+1|st, at)
» Both can be done non-parametrically

» We directly estimate o (s, ) as a probability, not as a function of the
idiosyncratic error v. Typically, strategies will follow a cutoff rule in v,
and given a distributional assumption on v, we can back out the
cutoffs from the probabilities.

» Multiplicity ignored. Using data from just a single market, no
equilibrium selection is needed. Using data from multiple markets, we
need to assume that they are all in the same MPE.
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Bajari, Benkard, and Levin (2012)

Forward simulation

Value function given strategy profile:

V(St,()' ‘9 Zﬂ'/ U/ ST7VI7') 577V1716)|5t

T=t

Simulation allows us to approximate the expectation over this sum. Our
estimate of V will be an average over a large number of simulations S
with a large number of periods T approximating the infinite sum.

1.

Start at a given state s = s, draw private shocks from distribution G

2. Calculate the action ajp = o; (so, vjo) for each agent i
3.
4. Repeat steps 1-3 for large number of periods T (or until each player

Draw a new state s; using transition probabilities P (s1|sp, ag)

reaches a terminal state)
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Bajari, Benkard, and Levin (2012)

Linearity

» Having a linear profit function,
mi(a,s,v;;0) =WV (a,s,v) -0
simplifies the computational burden of forward simulation dramatically

» Ultimately, we want to compute value functions based on the
simulations. Linearity allows us to write:

o0

Vi(st,0,0) = E Z’/T,' (0i (SryVir), SeyVir) - Olse| = Wi (s¢,0) -0

T=t

> In this case, we only need the simulation to calculate W, and then we
can just multiply W by 6 in order to evaluate V for different
parameters.
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Bajari, Benkard, and Levin (2012)

Estimation

» Vi(s,8;,6_;;0) is the estimated value function for the estimated

strategy profile (which should be approximately the true equilibrium
strategy profile).

» Vi(s,0i,6_;;0) is the estimated value function for a deviation from
the equilibrium strategy:

» Main idea behind BBL's estimator: we want
Vi(s,6i,6_i;0) > Vi(s,i,6_i;0)

for all o;
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Bajari, Benkard, and Levin (2012)

Estimator

» Differences:
g(ng) = \/i(saa_iaa——i;e) - \/i(saa_ha——i;e)
where x denotes a combination of /, s, and ;.

» Objective function:

Q(6) = (min{g(x;6),0})*

xeX

where X is some large set of possible deviations
» 0 = ming Q(0)
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Bajari, Benkard, and Levin (2012)

Results: Ryan (2012)

» Ryan allows fixed costs, entry costs, scrap values, and equilibrium
behavior to differ before and after regulations were implemented in
1990.

> He has data from 1980-1999, which isn’t a lot given the richness of
the state space. What allows him to estimate the model is having
many regional markets (assumed to all share the same MPE)

» Main findings: regulation increases entry costs, leading to greater
concentration
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Fowlie, Reguant, and Ryan (2014)

“Market-Based Emissions Regulation and Industry Dynamics”
Meredith Fowlie, Mar Reguant, and Stephen Ryan (2014)
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Fowlie, Reguant, and Ryan (2014)

Cement

» Cement production is a major GHG contributor (5% of global

emissions), and a (moderate) tax of $40/ton of carbon would double
variable costs of production.

> Motivation: regulation could lead to changes market power, and

leakage may limit the effectiveness of regulation imposed within a
single market.

30/34



Fowlie, Reguant, and Ryan (2014)

Model

» Model is much like Ryan (2012), but augmented with a model of
imports:

Local demand: InQ@, = aom+ a1lnPpy

Import supply: InM,, = po+ p1lnPn

» They ignore several potential mitigation methods (switching to new
technologies and potentially switching fuel sources) because such
switches are not observed in the data. However, entrants will enter
with state-of-the art technology.
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Fowlie, Reguant, and Ryan (2014)

Counterfactuals

» They consider different policy designs: emissions permit auctioning,
grandfathering, dynamic allocation updating, and a border tax
adjustment

» For each policy regime, they compute the optimal carbon price, given
an assumed social cost of carbon.
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Fowlie, Reguant, and Ryan (2014)

Table 9: Optimal carbon prices for different mechanisms

Federal Coastal Inland Welfare A  Welfare A Welfare A

T; T T at 77 at {r7,77} at 7T =SCC

SCC =820
Auctioning 0 0 0 0 0 -14,886
Grandfather 0 0 0 0 0 -6,609
Output 0 0 0 0 0 -2,519
BTA 0 0 0 0 0 -6,141

SCC =8§45
Auctioning 5 5 15 905 1,316 -12,890
Grandfather 10 5 35 1,357 2,259 -5,839
Output 25 15 60 1,047 1,628 619
BTA 20 25 15 5,991 6,269 3,150

Notes: Carbon prices in $. Welfare in M$. Optimal carbon prices computed on a grid including
{0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65}.
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Fowlie, Reguant, and Ryan (2014)

Figure 5: Abatement Curves

(a) Abatement Average Cost (leakage ignored)

(b) Abatement Average Cost (leakage-corrected)
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