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Why do we study Auctions?

» Many markets are organized as auctions: art, government
procurement, oil leases, electricity, treasury bills, eBay, etc.

» Auction as a price discovery mechanism to aggregate
information.
» Advantages:
» Rules of the market are clear and known by everyone
(including the researcher)
» Data availability: Actions (bids) and outcomes are oftentimes
recorded.
» Possible to analyze the effects of entry, collusion, mergers,
design changes (revenues, efficiency, prices, profits).



Auctions: Classification

» How many objects are sold (procured)?
» Single unit: Oil leases, art sales, road constructions, timber
tracts.
» Multi unit: treasury bills, electricity, spectrum auctions.

» What's the mechanism by which goods are allocated and
payments are computed?

(SU) First price: procurement, some timber tracts.
(SU) Second price: e-bay, art sales, internet advertising.
(MU) Discriminatory: some treasury bills.

(MU) Uniform: some treasury bills, electricity, spectrum
auctions.
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Auctions: Classification (cont)

» How is the bidding mechanism organized?
» Sealed-bid: procurement, treasury bills, internet advertising,
some timber tracts.
» Open, Ascending: eBay, art sales, some timber tracts.
» Open, Descending: some corporate debt securities and IPOs,
some used car sales, some food markets.



Auctions: Classification (cont)

» How do bidders value the goods?

» Private values: valuation only a function of own shock.

» Common value: valuation is common, bidders receive a noisy
independent signal.

» Interdependent/affiliated values: some correlation, but also
idiosyncratic component.



Empirical Analysis

» Usually interested in inferring fundamentals (bidder
valuations) from observed bidding data (offers).

» Knowing about valuations allows to compute markups, v — p.

» Study how markups, rents, depend on forms of competition,
properties of the good (private value vs common value), etc.

> Inferring fundamentals can also be useful to explore other
issues related to the economic environment.



Empirical Analysis: Approaches

» Auction environments are well defined, strategic game
understood.

» However, often theory helps little in characterizing solution to
the auction (only for special cases).
» Theory is often more explicit about necessary first-order
conditions.
» Two approaches:
» Explicit approach that solves for the equilibrium outcome.
> Indirect approach based on necessary first-order conditions.
» First approach needs to be parametric, second approach can
be parametric or non-parametric.
» Alternative approaches do not impose full optimality
conditions.
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Simulation Approach



Laffont, Ossard and Vuong (1995)

» Structural estimation of first-price auction with independent
private values (IPV).

» Auctioning method is descending (Dutch).
» Recover parametric distribution of bids.

» Parametric structural approach using simulated method of
moments.

» Use it to infer issues of optimal design (auction format,
reserve price).



Set-up

| bidders, symmetric with IPV valuations v; ~ F(+|z,0).
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» Reserve price pg.

Goal is to estimate 6 based on observed outcomes.

v
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Limitation: descending auction, only winning bid is observed.

v

Construct moments for winning bids based on auction model.



Equilibrium Conditions

» Ignore reserve price for now (details in paper).

v

Under symmetric strategies 5(v), bidder maximizes:

max (vi — b,-)F(Bil(b,-))’*l.

i

First-order condition:

v

1
B'(vi)

Differential equation, b; = 5(v;), with solution

(v = BN = DF () D (v) s = ()2 = 0.

v

= E[vi_1.4]vi = vp].

S xf(x)F(x) 2dx
E'(V,',/,pO,F) = F(V‘)l_l



Expected Winning bid

v

Define winning bid as b" = e(v(;.y), I,p° F).

» Conditional on valuation being larger than p°,
o
e(vip, 1,p% F) = / e(v,1,p°, F)I - F(v)!=tf(v)dv.
Py

v

One could simulate this object for a given distribution F.

v

Simpler approach is possible.



Revenue Equivalence Theorem

Revenue Equivalence Theorem Assume each of N risk-neutral
bidders has a privately known signal X independently drawn from a
common distribution T that is strictly increasing and atomless on
its support [X, X]. Any auction mechanism which is (i) efficient in
awarding the object to the bidder with highest signal; and (i)
leaves any bidder with the lowest signal X with zero surplus yields
the same expected revenue for the seller, and results in a bidder
with signal x making the same expected payment.

» Equivalence between first-price and second price auction.

» Second-price auction winning bid much easier to simulate
(second order statistic).



Estimation Steps

» For each parameter guess 6 and each auction /,
» Draw v{,..., v}, simulated valuations from F(-|6, z).
» Sort draws in ascending order.
» Set b/ as second highest valuation (or reservation price p°).
» Approximate expectation of second order statistic across
simulations, E(b};0) = £ >, b/,

» Estimate 6 by NLLS:

1 L
min > (b — E(b}";0)).

0
I=1



Empirical Specification

v

Data from French eggplant market (81 auctions).

Observe winning bid and auction characteristics (seller 1D,
case size, time control, total supply).

v

v

Specify log valuation, log-normal assumption:
Elogvi=p, =0, + 0, seller, + 0, size 1, + 6, size 2, + 65 period,

+ 6, date; + 6, supply, (I=1,...,81).

v

Remaining challenges:

» Calibrate variance of shocks with price variance.
» Number of bidders not observed (sensitivity analysis).



Results

TABLE I
Parameters

Variables First Model Second Model
Number of Buyers (1) 11 18
Number of Simulations (S) 20 20
Number of Auctions (L) 81 81
Constant 0.1297 0.0286

(0.02) (0.06)
Seller —0.0107 —0.0240

(-0.17) (-051)

Size 1 0.2402 0.2402

(3.57 (4.39)
Size 2 0.1373 0.1213

(1.39) (1.60)
Period 1.2404 1.1998

(2.16) (2.90)
Date 0.3115 0.3202

3.04) (4.03)
Supply —0.0340 —0.0357

(-0.59) (-0.81)

Criterion Value 0.52395 0.51401




FOC Approach



Guerre, Perringe and Vuong (2001)

» Main idea: re-arrange necessary first-order conditions as a
functions of objects that are directly recoverable in the data.

» Transform FOC as function of distribution of bids (G), instead
of valuations (F).

» Monotonicity of equilibrium bids with valuations allows to
recover underlying valuation distribution.

» Distribution can be recovered non-parametrically.

> In practice, specially good if all bids are observed, but it is still
applicable only if winning bid is observed (Athey and Haile,
2002).



Back to first-order conditions

» Equilibrium strategy given by,

f(vi)

B'(vi) = (vi — B(vi))(I — 1),_-(‘/’,

~—

» Due to monotonicity, G(b;) = F(vj),
g(bi) = f(vi) - 1/B'(vi).
» Can use expression to substitute equilibrium strategy,

G(bi)

Y= T g (k)



Back to first-order conditions

» Powerful result: shift question to how well can we
approximate bid distribution?

» Recovering valuations is then automatic under this framework,
as everything is “observed.”

» Non-parametric identification as long as distribution of bids
can be flexibly estimated.

» Typical approach: Kernel estimation based on observed bids.



Estimation Steps

» Approximate G(b) and g(b) from bidding data, e.g.,

&(b) = — ,ZZ (b b’t),

» Recover valuations as

N (bi)
Vi = b,‘ + <
(I-1)&

» Fit density function using recovered sample of ¥;.

—~
o
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With only winning bids

> Relationship between winning bid and underlying distribution.
» Observing G.; directly gives a representation of G(b).
» Winning bid is first order statistic, CDF given by,

Gr.i(b) = G(b)'.

> In practice, with many bidders, it might be hard to infer
valuations at low ranges.

» Also general criticism for auctions estimation.

» First-order condition not be very accurately estimated if
probability of winning is very very small.



Other extensions

» GPV has been very influential in the way auction data is
analyzed.

» Many other models and derivations have been considered.

» Some examples:

» Affiliated private values (Li, Perringe, Vuong, 2002).

» Testing common values and private values (Haile, Hong,
Shum, 2003).

» Test RET (Athey, Levin and Seira, 2008).

» Multi-unit auctions (Hortasu, 2002; Wolak, 2003).

» Dynamics (Jofre-Bonet and Pesendorfer, 2003).

> ... and many more!



Minimal Assumptions



Haile and Tamer (2003)

» Context: US Forest Service timber auctions.

» Observe many auctions, number of bidders / and the K
highest bids.

» Symmetric independent private values.

» Identification of English auctions (i.e. ascending auctions)
under two simple assumptions:

1. bidders never bid more than their valuations,
2. bidders never let an opponent win with a bid below their
valuation.



English auction and valuations

» In a second price auction, optimal to bid own valuation.
It would be tempting to take F(v) as G(b).

v

v

Revelation of bids on ascending auction does not happen for
all bidders.

> Prices get revealed in jumps (when bidders quote a new price).
» Observed prices can jump, not all bidders might quote a price.
TABLE 2
GAPS BETWEEN FIRST- AND SECOND-HIGHEST BIDS
Minimum Gap +
Quantiles High Bid Gap Increment Increment
10% 9,151 30 4.1 1.2
25% 22,041 92 10.1 6.9
50% 55,623 309 23.4 14.8
75% 127,475 858 52.1 20.0

90% 292,846 2,048 110.5 76.4




Information in the Data |

Data reveals distribution of K first order statistics.

Estimate the probability that the i-th highest bid in all
auctions with n bidders is below v non-parametrically.

v

v

Possible to condition on number of bidders.

v

v

Empirical likelihood:

.

A 1

Gir (v) = le(lt =1, by, < v).
=1



Upper bound

» Bidders never bid more than their valuations:
biy < vip = Fiy(v) < Gy (v).
» Fact:
! / _ _
Fu) = (L) Feya-Fm
j=1
F(v) = o(Fi(v),il)

» This holds for any / and /. ¢ is monotone in its first argument.

F(v) < Fy(v)= b m]i?E[l ) I]¢(Gi:1 (v).i 1)

» Use GA,-;/(v) to obtain an estimate.



Envelope

$(G1:3(v); 1, 3)

Fy ()
$(G3:3(v); 3,3)

&(G2:3(v);2,3)

I
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Information in the Data Il

» In ascending auctions, bidders can increase their bid if price is
still below their valuation.

» Assume bidders do not let the price clear at their valuation v
minus minimum increment (one penny).

» Winning bid plus increment will be above second highest
valuation.

> |dentify perturbed distribution (winning bid plus increment):

;
> 1(le=1 by + A< V).

t=1

1

@/:A/(V):?I



Lower Bound

» Bidders do not allow an opponent to win if willing to beat:
Vit < b+ A = Fyy (v) > G (v).
» Fact:

Fioii(v) = FOW +1-F(W)ta=F(v))
F(V) = (ﬁ(F/,l;/(V),/—l,l)

» Because this holds for any / and ¢ is monotone in its first
argument:

F(v)>F(v)= ler['geil.xm]gb (Gﬁ, (v), -1, /)

> Use é,A,(v) to obtain an estimate.



Putting bounds together

» Use observed bids to recover distribution of order statistics.

» Invert order statistic CDF to get bound on valuation CDF.

» Under the two assumptions,

= max 6 (CA W), 1-11),
v()=, mn 0 (G (v),i1)



Inference

Theorem 3: If T,/T — X\, € (0,1) as T — 0 for all
ne {2,3..,M} then Fi (v) — Fi(v) and Fy (v) — Fy(v) a.s.
and uniformly in v.

» In practice, bounds may cross!

» Not too surprising, taking the minimum for the upper bound
and the maximum for the lower bound.

» Use smoothing approach, replace min and max with weighted
average:

| i S [ ()
min (y1, .., yJ) —pL_OOZVJ [Zk exp (ykﬂ)}

and the max attains when p — oc.



Data

» Auctions for timber from US Forest Service.

» Focus on scaled sales where bidders pay for the quantities
actually harvested (less scope for common values).

» Data on estimated value of particular forests, expected
harvest, other plot details.

» |PV conditional on observables.

TABLE 3
SUMMARY STATISTICS
Standard
Mean Deviation Minimum Maximum
Number of bidders 5.7 3.0 2 12
Year 1985.2 2.6 1982 1990
Species concentration .68 23 24 1.0
Manufacturing costs 190.3 43.0 56.7 286.5
Selling value 415.4 61.4 202.2 746.8
Harvesting cost 120.2 34.1 51.1 283.1
Six-month inventory* 1,364.4 376.5 286.4 2,084.3
Zone 2 dummy .88 0 1

* In millions of board feet.



Results on Bounds

F1G. 10.—U.S. Forest Service timber auctions. Solid curves are estimated bounds, and
dotted curves are bootstrap confidence bands.



Effects of observables

» Functional form assumption:

Vie = X¢B + €i

TABLE 5
FOREST SERVICE TIMBER AUCTIONS: SEMIPARAMETRIC MODEL OF BIDDER
VALUATIONS (Modified Minimum Distance Estimates)

95% Bootstrapped

Interval Estimate Confidence Interval
Constant [8.8, 15.12] [2.33, 18.15]
Species concentration [13.19, 13.64] [11.14, 16.54]
Manufacturing cost [—.85, —.81] [—1.02, —.79]
Selling value [.61, .71] [.57, .96]
Harvesting cost [—.54, —.51] [—.59, —.48]
Six-month inventory [—.026, —.025] [—.030,—.021]

Number of bidders [.81, 1.23] [ .66, 1.24]




Bounds on Valuations and Optimal Reserve Price

» Valuations can be used to analyze further aspects of the
auction.

» Optimal reserve price for an auctioneer with value vy
(Myerson 1981; Riley and Samuelson 1981) maximizes,

7(p)=(p—wv)(1—Fo(p))-

» Bounds on F imply bounds in the function 7 (p).

» Under the assumption that 7 (p) is pseudo-concave, it also
imply bounds on the optimal reserve price.

» Require objective function to be pseudo-concave.

» Requires reserve prices in the actual data to be low or zero
compared to the optimal.



Bounds on Profits and Bounds on Optimal Reserve Price

» Profits bounded by,

m1(p) = (p —vo) (1 = Fu (p)),
m2(p) = (p — vo) (1 — FL(p)).

> Let p; maximize m1(p). Then,

pL = sup{p < pI : m2(p) < 71},
pu = inf{p > p1 : m2(p) = 71}

» Use empirical distributions to back these prices out.



Bounding Reserve Prices

Expected
Profit

i

m1(p)

L pi

Fic. 2

bu



Results on Optimal Reserve Prices

» They simulate outcomes under aJternative reserve prices
assuming F = F; 5 (v) or F = Fy 5 (v).

» Compare with actual mean reserve price of $54 per MBF
(area).

» Average gross revenue around $92.

» With vy = 20, gains from setting a close to optimal reserve
price would be less than 10 percent (and not necessarily
positive) even when F = F;.

» With vy = 80, potential gains much larger.

» Suggests that Forest Service could improve revenues by
putting more stringent reserve prices, and exploit high bids.



Bounding Reserve Prices

TABLE 4
SIMULATED OUTCOMES WITH ALTERNATIVE RESERVE PRICES

RESERVE PRICE

12 (bt po)/2 pu
Distribution of Valuations
F, F, F, F, F, F,
Reserve price when v,=$20 62.40 86.02 109.65
Change in profit 6.96 —2.78 6.67 —2.74 1.74 —18.57
Pr(no bids) .00 .02 .07 12 .19 41
Reserve price when v,=$40 74.93 92.29 109.65
Change in profit 7.64 —.61 761 —1.14 6.30  —10.04
Pr(no bids) .03 .05 11 18 .19 41
Reserve price when v,=$60 85.67 103.39 121.11
Change in profit 9.23 1.92  12.04 3.14 7.21 —6.05
Pr(no bids) .07 12 15 28 .35 .58
Reserve price when v,=$80 98.20 112.34 126.48
Change in profit 13.65 7.63  15.03 6.82  10.44 .96
Pr(no bids) 13 24 28 .46 .46 72
Reserve price when v,=$100 111.09 122.54 134.00
Change in profit 20.09 15.94 21.65 16.87  17.00 14.30
Pr(no bids) .28 45 45 .60 .67 .80
Reserve price when v,=$120 144.74 156.01 167.29
Change in profit 32.06 31.31 33.72 31.64 31.56 28.87
Pr(no bids) .84 .86 .84 .89 .88 97

Note.—Profit and reserve price figures are given in 1983 dollars per MBF. See text for additional details.



Next week

» Interdependent Costs (Somaini, 2014)
» Dynamic Auctions (Jofre-Bonet and Pessendorfer, 2003)
» Multi-Unit Auctions (McAdams and Hortasu, 2010)
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