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Why do we study Auctions?

I Many markets are organized as auctions: art, government
procurement, oil leases, electricity, treasury bills, eBay, etc.

I Auction as a price discovery mechanism to aggregate
information.

I Advantages:
I Rules of the market are clear and known by everyone

(including the researcher)
I Data availability: Actions (bids) and outcomes are oftentimes

recorded.

I Possible to analyze the effects of entry, collusion, mergers,
design changes (revenues, efficiency, prices, profits).



Auctions: Classification

I How many objects are sold (procured)?
I Single unit: Oil leases, art sales, road constructions, timber

tracts.
I Multi unit: treasury bills, electricity, spectrum auctions.

I What’s the mechanism by which goods are allocated and
payments are computed?

I (SU) First price: procurement, some timber tracts.
I (SU) Second price: e-bay, art sales, internet advertising.
I (MU) Discriminatory: some treasury bills.
I (MU) Uniform: some treasury bills, electricity, spectrum

auctions.



Auctions: Classification (cont)

I How is the bidding mechanism organized?
I Sealed-bid: procurement, treasury bills, internet advertising,

some timber tracts.
I Open, Ascending: eBay, art sales, some timber tracts.
I Open, Descending: some corporate debt securities and IPOs,

some used car sales, some food markets.



Auctions: Classification (cont)

I How do bidders value the goods?
I Private values: valuation only a function of own shock.
I Common value: valuation is common, bidders receive a noisy

independent signal.
I Interdependent/affiliated values: some correlation, but also

idiosyncratic component.



Empirical Analysis

I Usually interested in inferring fundamentals (bidder
valuations) from observed bidding data (offers).

I Knowing about valuations allows to compute markups, v − p.

I Study how markups, rents, depend on forms of competition,
properties of the good (private value vs common value), etc.

I Inferring fundamentals can also be useful to explore other
issues related to the economic environment.



Empirical Analysis: Approaches

I Auction environments are well defined, strategic game
understood.

I However, often theory helps little in characterizing solution to
the auction (only for special cases).

I Theory is often more explicit about necessary first-order
conditions.

I Two approaches:
I Explicit approach that solves for the equilibrium outcome.
I Indirect approach based on necessary first-order conditions.

I First approach needs to be parametric, second approach can
be parametric or non-parametric.

I Alternative approaches do not impose full optimality
conditions.
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Simulation Approach



Laffont, Ossard and Vuong (1995)

I Structural estimation of first-price auction with independent
private values (IPV).

I Auctioning method is descending (Dutch).

I Recover parametric distribution of bids.

I Parametric structural approach using simulated method of
moments.

I Use it to infer issues of optimal design (auction format,
reserve price).



Set-up

I I bidders, symmetric with IPV valuations vi ∼ F (·|zl , θ).

I Reserve price p0.

I Goal is to estimate θ based on observed outcomes.

I Limitation: descending auction, only winning bid is observed.

I Construct moments for winning bids based on auction model.



Equilibrium Conditions

I Ignore reserve price for now (details in paper).

I Under symmetric strategies β(v), bidder maximizes:

max
bi

(vi − bi )F (β−1(bi ))I−1.

I First-order condition:

(vi − β(vi ))(I − 1)F (vi )
(I−2)f (vi )

1

β′(vi )
− F (vi )

I−1 = 0.

I Differential equation, bi = β(vi ), with solution

e(vi , I , p
0,F ) =

∫ vi
v xf (x)F (x)I−2dx

F (vi )I−1
= E [vI−1:I |vi = vI :I ].



Expected Winning bid

I Define winning bid as bw = e(v(I :I ), I , p
0,F ).

I Conditional on valuation being larger than p0,

e(vI :I , I , p
0,F ) =

∫ ∞
p0

e(v , I , p0,F )I · F (v)I−1f (v)dv .

I One could simulate this object for a given distribution F .

I Simpler approach is possible.



Revenue Equivalence Theorem

Revenue Equivalence Theorem Assume each of N risk-neutral
bidders has a privately known signal X independently drawn from a
common distribution T that is strictly increasing and atomless on
its support [X ,X ]. Any auction mechanism which is (i) efficient in
awarding the object to the bidder with highest signal; and (ii)
leaves any bidder with the lowest signal X with zero surplus yields
the same expected revenue for the seller, and results in a bidder
with signal x making the same expected payment.

I Equivalence between first-price and second price auction.

I Second-price auction winning bid much easier to simulate
(second order statistic).



Estimation Steps

I For each parameter guess θ and each auction l ,
I Draw v s

1 , . . . , v
s
I , simulated valuations from F (·|θ, zl).

I Sort draws in ascending order.
I Set bw ,s

l as second highest valuation (or reservation price p0).
I Approximate expectation of second order statistic across

simulations, E (bwl ; θ) = 1
S

∑
s b

w ,s
l .

I Estimate θ by NLLS:

min
θ

1

L

L∑
l=1

(bwl − E (bwl ; θ))2.



Empirical Specification

I Data from French eggplant market (81 auctions).

I Observe winning bid and auction characteristics (seller ID,
case size, time control, total supply).

I Specify log valuation, log-normal assumption:
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Since each day the market is quite specific and since we use data for auctions of 
single cases, the independence assumptions, which enable us to model the 
equilibrium as a static Bayesian equilibrium, seem satisfied. For each auction, 
we have the winning bid, the reservation price (see Graph Bi, Appendix B), and 
other relevant variables (see next subsection). 

As for the number of bidders we will explore two hypotheses. The first 
hypothesis is to ignore the potential asymmetry of the bidders and to consider 
that the number of bidders is the 11 participants who always attend this market. 
The second hypothesis, which is motivated by the observation that one buyer 
wins almost half of the auctions, considers this particular buyer as the agent of a 
number (unknown to us) of retail traders. 

4.3. The Distribution of Private Values 

We assume that private values follow a log-normal distribution for each 
auction. Unlike the cases considered ty Paarsch (1989, 1992), the log-normal 
distribution does not lead to a closed form bidding function (1). We let this 
distribution depend on various characteristics, which are drawn from our data 
file (see (5)). Specifically, we assume that the mean of the logarithm of 
valuations is a linear function of six exogenous variables: 

(26) E log VI = = 01 + 02 seller, + 03 size 1, + 04 size 2, + 05 period, 
+ 06date, + 07 supplyl (l = 1,... , 81). 

The first three exogenous variables control for the heterogeneity of eggplant 
cases. There are two sellers. In general, buyers prefer one of them, who has a 
reputation for better quality. The dummy variable "seller" is assigned the value 
zero for the preferred seller. There are three official size categories for 
eggplants: Less than three hundred grams by eggplant, between three and four 
hundred, and above four hundred. They are introduced through two dummy 
variables. The variable "size 1" takes the value one for the middle category and 
zero otherwise, while the variable "size 2" takes the value one for the largest 
category and zero otherwise. 

The last three exogenous variables are market variables. In this market each 
year prices drop from the beginning of August until the first week of September 
because of a large supply of substitute goods (other types of summer eggplants). 
There is accordingly a shock to demand that we accommodate with the dummy 
variable "period,"which takes the value 0 during this period and 1 otherwise. A 
question of particular interest to the organizer of the auctions is whether 
eggplant prices increase over time. This is taken into account with the "date" 
variable, which records the time at which the auction takes place within the year 
1990 normalized by 100. Hence June 25th, which is the opening of the season, 
corresponds to 1.76. The last variable "supply" measures the quantity of egg- 
plants (of all categories) in tons supplied at Marmande that day. It is related to 
the general state of the market supply in France. 

I Remaining challenges:
I Calibrate variance of shocks with price variance.
I Number of bidders not observed (sensitivity analysis).



Results
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TABLE I 

Parameters 

Variables First Model Second Model 

Number of Buyers (I) 11 18 
Number of Simulations (S) 20 20 
Number of Auctions (L) 81 81 
Constant 0.1297 0.0286 

(0.02) (0.06) 
Seller -0.0107 -0.0240 

(-0.17) (-0.51) 
Size 1 0.2402 0.2402 

(3.57) (4.39) 
Size 2 0.1373 0.1213 

(1.39) (1.60) 
Period 1.2404 1.1998 

(2.16) (2.90) 
Date 0.3115 0.3202 

(3.04) (4.03) 
Supply - 0.0340 - 0.0357 

(-0.59) (-0.81) 
Criterion Value 0.52395 0.51401 

shock due to the supply of a substitute good during the period coded zero. The 
trend coefficient is significantly positive. The supply coefficient is negative, 
although not significant. The lack of significance of the supply variable might be 
explained as follows. This variable is the local supply and not the global supply 
on this market. The final buyers buy on several markets so that the idiosyncratic 
local shocks in this market do not affect their willingness to pay. The global 
movement of supply is already taken into account by the period and date 
variables. 

Concerning the goodness-of-fit of our estimated model for I = 18, our ex- 
planatory variables enable us to track closely the winning bids b' by the 
simulated winning bids Xl(0) (see Figure 2). In view of Proposition 1, an R2 
measure can be computed as 1 - Q* L(0)/var bw. This gives R2 = .895.22 

5. CONCLUSION 

The major contribution of this paper is to describe a new research strategy for 
analyzing auction data sets. Using a simulated NLLS estimation method we 
have shown that a traditional structural econometric approach can be employed. 

22 In principle, the log-normality of the private value distribution can also be tested. For instance, 
we can nest the log-normal family in {f*(. Iz, 6, a) =( - u)fQ Iz, 6) + lh( Iz): a e R}, where 
h(- Iz) is a fixed distribution, The condition Jvh(vIz) dv= 0 may be imposed so that the conditional 
mean of v given z remains as specified in (26). Then standard classical tests of a = 0 can be used. 



FOC Approach



Guerre, Perringe and Vuong (2001)

I Main idea: re-arrange necessary first-order conditions as a
functions of objects that are directly recoverable in the data.

I Transform FOC as function of distribution of bids (G ), instead
of valuations (F ).

I Monotonicity of equilibrium bids with valuations allows to
recover underlying valuation distribution.

I Distribution can be recovered non-parametrically.

I In practice, specially good if all bids are observed, but it is still
applicable only if winning bid is observed (Athey and Haile,
2002).



Back to first-order conditions

I Equilibrium strategy given by,

β′(vi ) = (vi − β(vi ))(I − 1)
f (vi )

F (vi )
.

I Due to monotonicity, G (bi ) = F (vi ),

g(bi ) = f (vi ) · 1/β′(vi ).

I Can use expression to substitute equilibrium strategy,

vi = bi +
G (bi )

(I − 1)g(bi )
.



Back to first-order conditions

I Powerful result: shift question to how well can we
approximate bid distribution?

I Recovering valuations is then automatic under this framework,
as everything is “observed.”

I Non-parametric identification as long as distribution of bids
can be flexibly estimated.

I Typical approach: Kernel estimation based on observed bids.



Estimation Steps

I Approximate Ĝ (b) and ĝ(b) from bidding data, e.g.,

ĝ(b) =
1

T · I
∑
t

∑
i

1

h
K
(
b − bit

h

)
,

Ĝ (b) =
1

T · I
∑
t

∑
i

1 (bti ≤ b) .

I Recover valuations as

v̂i = bi +
Ĝ (bi )

(I − 1)ĝ(bi )
.

I Fit density function using recovered sample of v̂i .



With only winning bids

I Relationship between winning bid and underlying distribution.

I Observing GI :I directly gives a representation of G (b).

I Winning bid is first order statistic, CDF given by,

GI :I (b) = G (b)I .

I In practice, with many bidders, it might be hard to infer
valuations at low ranges.

I Also general criticism for auctions estimation.

I First-order condition not be very accurately estimated if
probability of winning is very very small.



Other extensions

I GPV has been very influential in the way auction data is
analyzed.

I Many other models and derivations have been considered.
I Some examples:

I Affiliated private values (Li, Perringe, Vuong, 2002).
I Testing common values and private values (Haile, Hong,

Shum, 2003).
I Test RET (Athey, Levin and Seira, 2008).
I Multi-unit auctions (Hortasu, 2002; Wolak, 2003).
I Dynamics (Jofre-Bonet and Pesendorfer, 2003).

I ... and many more!



Minimal Assumptions



Haile and Tamer (2003)

I Context: US Forest Service timber auctions.

I Observe many auctions, number of bidders I and the K
highest bids.

I Symmetric independent private values.
I Identification of English auctions (i.e. ascending auctions)

under two simple assumptions:

1. bidders never bid more than their valuations,
2. bidders never let an opponent win with a bid below their

valuation.



English auction and valuations

I In a second price auction, optimal to bid own valuation.

I It would be tempting to take F̂ (v) as Ĝ (b).

I Revelation of bids on ascending auction does not happen for
all bidders.

I Prices get revealed in jumps (when bidders quote a new price).

I Observed prices can jump, not all bidders might quote a price.32 journal of political economy

TABLE 2
Gaps Between First- and Second-Highest Bids

Quantiles High Bid Gap
Minimum
Increment

Gap !
Increment

10% 9,151 30 4.1 1.2
25% 22,041 92 10.1 6.9
50% 55,623 309 23.4 14.8
75% 127,475 858 52.1 20.0
90% 292,846 2,048 110.5 76.4

dollars) on the median tract.23 Forest Service officials report that jump
bidding is common. Table 2 provides some support, showing a gap
between the highest and second-highest bid of several hundred dollars
(roughly 10–20 times the minimum increment) in the majority of auc-
tions. Since the cost of jump bidding—the risk that one wins with the
jump bid and pays too much—is highest at the end of the auction, jump
bidding is likely to be more significant early in the auctions. However,
these gaps themselves are generally quite small relative to the total bid,
suggesting that we may be able to obtain tight bounds.

B. Reserve Price Policy

The Forest Service’s mandated objective in setting a reserve price is to
ensure that timber is sold at a “fair market value,” defined as the value
to an “average operator, rather than that of the most or least efficient”
(U.S. Forest Service 1992). Many observers have argued that Forest
Service reserve prices fall short of this criterion and are essentially non-
binding floors (see, e.g., Mead, Schniepp, and Watson 1981, 1984; Haile
1996; Campo et al. 2000). Bidders, for example, claim that the reserve
prices never prevent them from bidding on a tract (Baldwin et al. 1997).
As discussed above, for our purposes it is sufficient to assume only that
the actual reserve prices are below the profit-maximizing reserve prices.

There is an ongoing controversy over so-called below-cost sales—sales
generating revenues insufficient to cover even the costs to the Forest
Service of administering the contract (see, e.g., U.S. General Accounting
Office 1984, 1990, 1991; U.S. Forest Service 1995). Obviously, this is
possible only with reserve prices below profit-maximizing levels. How-
ever, reserve prices are not set with the goal of profit maximization nor

23 Forest Service rules actually require only that total bids rise as the auction proceeds,
although local officials often specified discrete increments. In the time period we consider,
the 5 cent increment was a common practice in this region. Sometimes increments of 1
cent per MBF were used, and many sales used no minimum increment. We use the 5 cent
increment since this results in a more conservative bound, although variations of this
magnitude have very little effect on the results: 5 cents represents about 0.05 percent of
the average bid in our sample.



Information in the Data I

I Data reveals distribution of K first order statistics.

I Estimate the probability that the i-th highest bid in all
auctions with n bidders is below v non-parametrically.

I Possible to condition on number of bidders.

I Empirical likelihood:

Ĝi :I (v) =
1

TI

T∑
t=1

1 (It = I , bi :It ≤ v) .



Upper bound

I Bidders never bid more than their valuations:

bi :I ≤ vi :I =⇒ Fi :I (v) ≤ Gi :I (v) .

I Fact:

Fi :I (v) =
I∑

j=1

(
I
j

)
F (v)j (1− F (v))I−j

F (v) = φ (Fi :I (v) , i , I )

I This holds for any i and I . φ is monotone in its first argument.

F (v) ≤ FU (v) ≡ min
I∈[2,..,m],i∈[1,..,I ]

φ (Gi :I (v) , i , I )

I Use Ĝi :I (v) to obtain an estimate.
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Fig. 1

2. Lower Bound

Turning now to the lower bound on the distribution we follow anF(7),
analogous approach. Rather than assumption 1, however, here we use
assumption 2, which immediately implies

v̄ b p bu i n : nv ≤ v { Gi. (6)i i {b ! D b ! bn : n i n : n

Letting denote the CDF of the random variable defined in (6),uw(7) Vi

we then have Note, however, that impliesF(v) ≥ w(v). {v ! b ! D}n"1 : n n : n

Furthermore, the inequality is com-¯{v ! b ! D Gj ! n " 1}. v ! vj : n n : n i

pletely uninformative. Hence (6) really consists of only one inequality.
Lemma 3. v ≤ b ! D.n"1 : n n : n

Although this provides a nontrivial upper bound on the realization
of only one order statistic of the valuations at each auction, the relation
(4) enables us to use this limited information to construct a much more



Information in the Data II

I In ascending auctions, bidders can increase their bid if price is
still below their valuation.

I Assume bidders do not let the price clear at their valuation v
minus minimum increment (one penny).

I Winning bid plus increment will be above second highest
valuation.

I Identify perturbed distribution (winning bid plus increment):

Ĝ∆
I :I (v) =

1

TI

T∑
t=1

1 (It = I , bIt :It + ∆ ≤ v) .



Lower Bound

I Bidders do not allow an opponent to win if willing to beat:

vI−1:I ≤ bI :I + ∆ =⇒ FI−1:I (v) ≥ G∆
I :I (v) .

I Fact:

FI−1:I (v) = F (v)I + I · F (v)I−1 (1− F (v))

F (v) = φ (FI−1:I (v) , I − 1, I )

I Because this holds for any I and φ is monotone in its first
argument:

F (v) ≥ FL (v) ≡ max
I∈[2,..,m]

φ
(
G∆
I :I (v) , I − 1, I

)
I Use Ĝ∆

I :I (v) to obtain an estimate.



Putting bounds together

I Use observed bids to recover distribution of order statistics.

I Invert order statistic CDF to get bound on valuation CDF.

I Under the two assumptions,

F̂L (v) ≡ max
I∈[2,..,m]

φ
(
Ĝ∆
I :I (v) , I − 1, I

)
,

F̂U (v) ≡ min
I∈[2,..,m],i∈[1,..,I ]

φ
(
Ĝi :I (v) , i , I

)
.



Inference

Theorem 3: If Tn/T → λn ∈ (0, 1) as T → 0 for all
n ∈

{
2, 3..., M̄

}
then F̂L (v)→ FL (v) and F̂U (v)→ FU (v) a.s.

and uniformly in v .

I In practice, bounds may cross!

I Not too surprising, taking the minimum for the upper bound
and the maximum for the lower bound.

I Use smoothing approach, replace min and max with weighted
average:

min (y1, .., yJ) = lim
ρ→−∞

∑
yj

[
exp (yjρ)∑
k exp (ykρ)

]
and the max attains when ρ→∞.



Data

I Auctions for timber from US Forest Service.

I Focus on scaled sales where bidders pay for the quantities
actually harvested (less scope for common values).

I Data on estimated value of particular forests, expected
harvest, other plot details.

I IPV conditional on observables.34 journal of political economy

TABLE 3
Summary Statistics

Mean
Standard
Deviation Minimum Maximum

Number of bidders 5.7 3.0 2 12
Year 1985.2 2.6 1982 1990
Species concentration .68 .23 .24 1.0
Manufacturing costs 190.3 43.0 56.7 286.5
Selling value 415.4 61.4 202.2 746.8
Harvesting cost 120.2 34.1 51.1 283.1
Six-month inventory* 1,364.4 376.5 286.4 2,084.3
Zone 2 dummy .88 0 1

* In millions of board feet.

are quite tight. The shape of the true distribution suggested by these
bounds resembles a lognormal distribution, which has been used in
several prior studies.

To construct estimates of bounds on the optimal reserve price, an
estimate of the cost of allowing the harvest of the tract, is needed.v ,0

We consider a range of possible values based on Forest Service estimates
(U.S. Forest Service 1995; U.S. General Accounting Office 1999).27 Table
4 shows the results of simulations used to evaluate the trade-offs between
net revenues and the probability that a tract goes unsold with alternative
reserve prices. Values of v0 between $20 and $120 are considered and
the implied bounds on the optimal reserve prices calculated. For each
value of v0, we consider three possible reserve prices: and theˆ ˆp , p ,L U

average of the two. The table reports simulated gains in profit per MBF
relative to actual profits, using each value of v0 as the measure of costs.
This is done both assuming and assumingˆF(7FX) p F (7FX) F(7FX) pL

providing estimated bounds on the profit gains (losses) fromF̂ (7FX),U

using each reserve price considered. Note that lemma 4 enables us to
use equilibrium bids in a second-price sealed-bid auction to obtain rev-
enue predictions.

As foreshadowed by our simulations, despite the tightness of the
bounds on in figure 8, the bounds on the optimal reserve price forF(7)
each v0 are fairly wide. Because the bounds on are tight, however,F(7)
our estimates of the expected revenues obtained with reserve prices

27 For sales in region 6 in 1993, the Forest Service estimated that costs of the timber
sales program were between $85 and $113 per MBF (U.S. General Accounting Office
1999). On the basis of sales in 1990–92, nationwide cost-based reserve prices between $18
and $47 per MBF were suggested as appropriate (U.S. Forest Service 1995), depending
on which timber sales program costs are to be covered by auction revenues. Both calcu-
lations include some costs that are sunk at the time of the auction and, therefore, should
be excluded from v0. However, other costs, such as forgone return on investment and
adverse environmental impacts, are excluded. Obtaining more precise estimates of v0,
ideally as a function of tract characteristics, would be an important step toward a more
definitive analysis of reserve price policies.



Results on Bounds
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Fig. 10.—U.S. Forest Service timber auctions. Solid curves are estimated bounds, and
dotted curves are bootstrap confidence bands.

between and differ little, with v0 held fixed. The calculated boundsˆ ˆp pL U

on the optimal reserve prices provide strong support for the assumption
that the actual reserve price (around $54) is well below the optimum.
Even with the estimated lower bound on is still slightly larger∗v p 0, p0

than the average actual reserve price. These results also suggest that, at
least on average tracts in our sample, reserve prices could be raised
considerably without causing many tracts to go unsold. Even if F(7) p

a reserve price nearly twice the actual average would be requiredF̂ (7),U

to drive the probability that a tract will go unsold past 15 percent—a
key threshold given a Forest Service policy of ensuring that at least 85
percent of all offered timber volume is actually sold (U.S. Forest Service
1992).

The potential gains in profit from raising reserve prices obviously
depend on v0. With for example, we estimate that gains wouldv p $20,0

be less than 10 percent (and not necessarily positive) even when
28 With however, the potential gains are muchF(7) p F(7). v p $80,L 0

larger. In that case, the Forest Service might achieve net gains of $10
per MBF or more, which would represent more than an 80 percent
increase in profits. With opportunity costs above the average gross rev-
enues of $92.08 per MBF, sales typically lead to a net loss. Hence, for
costs of $100 or $120, substantial gains (reductions in losses) from im-

28 Note that, in general, revenues need not be higher with a given reserve price between
pL and pU given one particular CDF between and However, if or ifF (7) F (7). D p 0L U

Myerson’s regularity condition is assumed, then lemma 4 implies that we can rule out the
optimality of reserve prices that yield a (statistically significant) reduction in expected
revenues when is assumed. This follows from the fact that a rightward shiftF(7) p F (7)L

in raises expected revenues at any reserve price. In our simulations, reductions inF(7)
expected revenues appear for a few reserve prices, but only when is assumed.F(7) p F (7)U



Effects of observables

I Functional form assumption:

vit = Xtβ + εitenglish auctions 37

TABLE 5
Forest Service Timber Auctions: Semiparametric Model of Bidder

Valuations (Modified Minimum Distance Estimates)

Interval Estimate
95% Bootstrapped
Confidence Interval

Constant [8.8, 15.12] [2.33, 18.15]
Species concentration [13.19, 13.64] [11.14, 16.54]
Manufacturing cost [!.85, !.81] [!1.02, !.79]
Selling value [.61, .71] [.57, .96]
Harvesting cost [!.54, !.51] [!.59, !.48]
Six-month inventory [!.026, !.025] [!.030,!.021]
Number of bidders [.81, 1.23] [ .66, 1.24]

lead to higher valuations. Moreover, the bounds are tight and the mag-
nitudes are reasonable. For example, to a first approximation, the value
of a contract is the selling value less harvesting and manufacturing costs.
If this approximation were exact (up to bidders’ idiosyncratic shocks),
the corresponding coefficients would equal "1, !1, and !1, respec-
tively, which are close to the estimated intervals. Finally, if the variation
in the number of bidders were exogenous, a negative coefficient on this
covariate would be implied by a common values model and a coefficient
of zero by a private values model (see, e.g., Haile, Hong, and Shum
2000; Athey and Haile 2002). The positive but very small coefficient
implied by our estimates is consistent with our assumption of private
values and a small amount of unobserved heterogeneity correlated with
the number of bidders.

VIII. Conclusion

Some theoretical models that serve well in capturing essential elements
of behavior in a market may nonetheless fall short of providing a map-
ping between primitives and observables that can usefully be treated as
exact by empirical researchers. This need not preclude the use of theory
to provide a structure for interpreting data, nor preclude inference on
the structural parameters and distributions essential for many policy
questions. In some cases, useful inferences can be made by relying on
weak assumptions—for example, axioms or necessary conditions for
equilibrium in a class of models—that, while insufficient to fully char-
acterize the mapping between primitives and observables, provide a
robust structural framework for inference.

We have considered one example of this approach, arguing that while
standard theoretical models of English auctions can imply unpalatable
identifying assumptions for many applications, useful inferences on the
primitives characterizing the demand and information structure can be
made on the basis of observed bids and weak restrictions on their in-



Bounds on Valuations and Optimal Reserve Price

I Valuations can be used to analyze further aspects of the
auction.

I Optimal reserve price for an auctioneer with value v0

(Myerson 1981; Riley and Samuelson 1981) maximizes,

π (p) = (p − v0) (1− F0 (p)) .

I Bounds on F imply bounds in the function π (p).

I Under the assumption that π (p) is pseudo-concave, it also
imply bounds on the optimal reserve price.

I Require objective function to be pseudo-concave.

I Requires reserve prices in the actual data to be low or zero
compared to the optimal.



Bounds on Profits and Bounds on Optimal Reserve Price

I Profits bounded by,

π1(p) = (p − v0) (1− FU (p)) ,

π2(p) = (p − v0) (1− FL (p)) .

I Let p∗1 maximize π1(p). Then,

pL ≡ sup{p < p∗1 : π2(p) ≤ π∗1},
pU ≡ inf{p > p∗1 : π2(p) ≥ π∗1}.

I Use empirical distributions to back these prices out.
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Fig. 2

Observe that bounds on the distribution imply bounds on theF(7)
profit function In particular, letp(7).

p (p) p (p ! v )[1 ! F (p)],1 0 U

p (p) p (p ! v )[1 ! F(p)], (14)2 0 L

so that, by theorems 1 and 2,

p (p) ≤ p(p) ≤ p (p) Gp. (15)1 2

Define and let and∗ ∗ ∗p p sup p (p) p ! arg sup p (p) p !1 p 1 1 p 1 2

If and either or has slope zero at∗ ∗arg sup p (p). p (p ) p p p (7) p (7)p 2 2 1 1 1 2

assumption 3 implies that Likewise, if∗ ∗ ∗ ∗ ∗p , p p p . p (p ) p p (p ) p1 1 2 1 2 2

then For these trivial special cases we define degenerate∗ ∗ ∗p , p p p .1 1

upper and lower bounds for completeness. Otherwise∗p p p p pU L 1

define
∗ ∗p { sup {p ! p : p (p) ≤ p },L 1 2 1

∗ ∗p { inf {p 1 p : p (p) ≤ p }.U 1 2 1

Note that and by construction. Figure 2 illustrates.∗ ∗p ≤ p p ≥ pL 1 U 1



Results on Optimal Reserve Prices

I They simulate outcomes under alternative reserve prices
assuming F = F̂L|X̄ (v) or F = F̂U|X̄ (v).

I Compare with actual mean reserve price of $54 per MBF
(area).

I Average gross revenue around $92.

I With v0 = 20, gains from setting a close to optimal reserve
price would be less than 10 percent (and not necessarily
positive) even when F = FL.

I With v0 = 80, potential gains much larger.

I Suggests that Forest Service could improve revenues by
putting more stringent reserve prices, and exploit high bids.
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TABLE 4
Simulated Outcomes with Alternative Reserve Prices

Reserve Price

pL (p ! p )/2L U pU

Distribution of Valuations

FL FU FL FU FL FU

Reserve price when v0p$20 62.40 86.02 109.65
Change in profit 6.96 "2.78 6.67 "2.74 1.74 "18.57
Pr(no bids) .00 .02 .07 .12 .19 .41

Reserve price when v0p$40 74.93 92.29 109.65
Change in profit 7.64 ".61 7.61 "1.14 6.30 "10.04
Pr(no bids) .03 .05 .11 .18 .19 .41

Reserve price when v0p$60 85.67 103.39 121.11
Change in profit 9.23 1.92 12.04 3.14 7.21 "6.05
Pr(no bids) .07 .12 .15 .28 .35 .58

Reserve price when v0p$80 98.20 112.34 126.48
Change in profit 13.65 7.63 15.03 6.82 10.44 .96
Pr(no bids) .13 .24 .28 .46 .46 .72

Reserve price when v0p$100 111.09 122.54 134.00
Change in profit 20.09 15.94 21.65 16.87 17.00 14.30
Pr(no bids) .28 .45 .45 .60 .67 .80

Reserve price when v0p$120 144.74 156.01 167.29
Change in profit 32.06 31.31 33.72 31.64 31.56 28.87
Pr(no bids) .84 .86 .84 .89 .88 .97

Note.—Profit and reserve price figures are given in 1983 dollars per MBF. See text for additional details.

posing higher reserve prices would be obtained by selling only tracts
receiving unusually high bids. While revenue maximization is not the
objective of the Forest Service timber sales program, these estimates
suggest the magnitudes of revenues and costs that must be weighed
against other objectives in determining optimal policy.

To evaluate the effects of auction observables on bidder valuations,
we estimate the simple semiparametric model

v p X b ! eit t it

assuming Table 5 presents estimated bounds on themed[e d X ] p 0.it it

parameter vector b. Following Manski and Tamer (2002), we construct
confidence intervals using the bootstrap. Since zero lies outside the 95
percent confidence interval for each coefficient, we can reject the hy-
pothesis that any of these conditioning variables has no effect on val-
uations. The implied signs are as expected: larger inventories, higher
harvesting costs, or higher manufacturing costs reduce valuations.
Greater species concentration and higher selling value of end products



Next week

I Interdependent Costs (Somaini, 2014)

I Dynamic Auctions (Jofre-Bonet and Pessendorfer, 2003)

I Multi-Unit Auctions (McAdams and Hortasu, 2010)
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