
Mixture Models:
Estimation and Economic Applications

Paul T. Scott

Empirical IO
Fall 2013

1 / 33



EM Algorithm Introduction

Mixture model notation

I x - observed variables
I ζ - unobserved variables assumed to have finite support, Z
I θ parameters of interest

I p (xi , ζi |θ) - complete data likelihood for ith observation
I p (xi |θ) - incomplete data likelihood for ith observation:

p (xi |θ) =
∑
z∈Z

p (xi , z |θ)

I qiz (θ) - expectation of incomplete data

qiz (θ) = Pr (ζi = z |xi , θ)
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EM Algorithm Introduction

Example 1: mixture of normals

I θ = (µ1, µ2, σ, α1)

I If zi = 1, then xi ∼ N (µ1, σ)

I If zi = 2, then xi ∼ N (µ2, σ)

I Pr (zi = 1) = α1
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EM Algorithm Introduction

Example 2: discrete choice with heterogeneity

I Panel of bus maintenance decisions indexed by (i , t)

I xit = (dit , pt , sit)
I dit ∈ {0, 1} - agent i ’s action at time t
I pt - price of new bus engine
I sit - mileage on bus engine. sit ∈ {0, 1, . . . , 90}

I zit - type of route bus takes. zit ∈ {1, 2}
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EM Algorithm Introduction

Example 3: collusion (Porter, 1983)

I Rob Porter (1983), "A Study of Cartel Stability: The Joint Executive
Committee, 1880-1886"

I

lnQt = α0 + α1 lnPt + α2Lt + U1t
lnPt = β0 + β1 lnQt + β2St + β3It + U2t

where
I Lt : demand shifters
I St : supply shifters
I It ∈ {0, 1} indicating whether the cartel was in a price war or not

I In previous notation,
I xt = (Qt ,Pt , Lt , St)
I zt = It
I θ = (α, β)
I to deal with simultaneity, likelihood function p (xi , ζi |θ) is FIML
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EM Algorithm Introduction

Complete and incomplete data likelihoods

The incomplete data log-likelihood function or unconditional log-likelihood
function for a mixture model involves a sum within an expectation, which
makes it very hard to maximize with standard optimization algorithms:

L (x |θ) =
∑

i
ln
(∑

z
p (xi , z |θ)

)
.

The EM algorithm is based on the (expected) complete data log-likelihood
function:

Q (x , q|θ) =
∑

i

∑
z

qiz ln (p (xi , z |θ)) .

Note that Q would simply be the log-likelihood function if ζ were observed.
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EM Algorithm Introduction

EM Algorithm overview

I The EM algorithm starts with some initial guess for θ(0)

I In the E-step, we calculate expectations of the q’s conditional on the
parameter values:

q(m)
iz = Pr

(
ζi = z |θ(m−1)

)
.

I In the M-step, we maximize the value of the complete data likelihood
function:

θ(m) = max
θ

Q
(
x , q(m)|θ

)
.

I The EM Algorithm iteratively applies E and M steps until θ(m)
converges.

7 / 33



EM Algorithm Introduction

EM Algorithm overview

I As I will illustrate, the E and M steps are often easy computationally
(in contrast to maximization of incomplete data likelihood function).

I Each EM iteration increases L (x |θ).

I Thus, iterating on the E and M steps will monotonically increase
L
(
x |θ(m)

)
, and θ(m) will typically converge to a local maximum of

L (x |θ).

I ⇒ EM Algorithm transforms a hard optimization problem into a
series of easy optimization problems
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EM Algorithm Introduction

Monotonicity

Monotonicity
L
(
x |θ(m)

)
≥ L

(
x |θ(m−1)

)

L
(
x |θ(m)

)
=

∑
i ln
(∑

z p
(
xi |ζi , θ

(m)
)
p
(
ζi |θ(m)

))
=

∑
i ln
(∑

z p
(
ζi = z |x , θ(m−1)

) p(xi |ζi ,θ
(m))p(ζi |θ(m))

p(ζi =z|x ,θ(n−1))

)

≥
∑

i
∑

z p
(
ζi = z |x , θ(m−1)

)
ln
(

p(xi |ζi ,θ
(m))p(ζi |θ(m))

p(ζi =z|x ,θ(m−1))

)
where the inequality follows from Jensen’s inequality
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EM Algorithm Introduction
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EM Algorithm Introduction

Monotonicity

L
(
x |θ(m)

)
=

∑
i ln
(∑

z p
(
xi |ζi , θ

(m)
)
p
(
ζiθ

(m)
))

=
∑

i ln
(∑

z p
(
ζi = z |x , θ(m−1)

) p(xi |ζi ,θ
(m))p(ζi |θ(m))

p(ζi =z|x ,θ(n−1))

)

≥
∑

i
∑

z p
(
ζi = z |x , θ(m−1)

)
ln
(

p(xi |ζi ,θ
(m))p(ζi |θ(m))

p(ζi =z|x ,θ(m−1))

)

≥
∑

i
∑

z p
(
ζi = z |x , θ(m−1)

)
ln
(

p(xi |ζi ,θ
(m−1))p(ζiθ

(m−1))
p(ζi =z|x ,θ(m−1))

)
where the second inequality follows because θ(m) is selected to maximize∑

i

∑
z

p
(
ζi = z |x , θ(m−1)

)
ln (p (xi |ζi , θ) p (ζi |θ))
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EM Algorithm Introduction
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EM Algorithm Introduction

Estimation of example 1: mixture of normals

I θ = (µ1, µ2, σ, α1)

I If zi = 1, then xi ∼ N (µ1, σ)

I If zi = 2, then xi ∼ N (µ2, σ)

I Pr (zi = 1) = α1

In the E step, we just apply Bayes’s Theorem to find q’s

q(m)
i1 = Pr

(
zi = 1|xi , θ

(m)
)

=

α
(m)
1 f
(

xi |µ(m)
1 ,σ(m)

)
α

(m)
1 f
(

xi |µ(m)
1 ,σ(m)

)
+

(
1−α(m)

1

)
f
(

xi |µ(m)
2 ,σ(m)

)
where f (x |µ, σ) is the density at x of the normal distribution with mean µ
and standard deviation σ2.

13 / 33



EM Algorithm Introduction

Estimation of example 1: mixture of normals

I In the M step, maximizing the complete data likelihood function
amounts to taking weighted means:

µ(m)
z =

∑
i
q(m)

iz xi

σ(m) =

√√√√∑z
∑

i q
(m)
iz (xi − µz)2∑

z
∑

i q
(m)
iz

α(m)
z = N−1

∑
i
q(m)

iz
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EM Algorithm Introduction

Estimation of example 1: mixture of normals

I Note: in a mixture model with covariates that enter linearly, the M
step involves weighted OLS instead of a weighted mean

I Bottom line: E and M step are both easy computationally, so
iterating on them goes quickly.

I In general, the EM algorithm can stop at local maxima, so some care
is needed to ensure a global optimum is attained (e.g., multiple
starting points).
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Arcidiacono and Jones (2003)

"Finite Mixture Distributions, Sequential Likelihood
and the EM Algorithm"

Arcidiacono and Jones (2003)
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Arcidiacono and Jones (2003)

Setup

I xi : ith observation
I z : mixture component
I fz (xi ; θ1, θ2) = f1z (xi ; θ1) f2z (xi ; θ1, θ2) distribution function of x for

component z
I αz : unconditional probability of component z
I n.b., different notation from the paper
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Arcidiacono and Jones (2003)

Sequential estimation background

I Forget about the mixture model for this slide:

f (xi ; θ1, θ2) = f1 (xi ; θ1) f2 (xi , θ1, θ2)

I We could estimate θ1 and θ2 by choosing them to jointly maximize∑
i ln f , or we could estimate:

θ̃1 = maxθ1
∑

ln f1 (xi ; θ1)

θ̃2 = maxθ2
∑

ln f2
(
xi ; θ̃1, θ2

)
I e.g., Hotz and Miller: conditional choice probabilities are estimated

before profit function is estimated.
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Arcidiacono and Jones (2003)

Sequential M step
I Main idea: combine sequential estimation and EM algorithm.

I Normal EM algorithm would estimate
(
θ

(m)
1 , θ

(m)
2

)
to jointly maximize(

θ
(m)
1 , θ

(m)
2

)
= arg max

(θ1,θ2)

∑
i

∑
z

q(m)
iz ln (f1z (xi ; θ1) f2z (xi ; θ1, θ2))

I Arcidiacono and Jones’s ESM algorithm estimates
(
θ

(m)
1 , θ

(m)
2

)
to

satisfy:

θ
(m)
1 = argmaxθ1

∑
i
∑

z q
(m)
iz ln (f1z (xi ; θ1))

θ
(m)
2 = argmaxθ2

∑
i
∑

z q
(m)
iz ln

(
f2z
(
xi ; θ

(m)
1 , θ2

))
I Does this strategy work? What are its asymptotic properties?
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Arcidiacono and Jones (2003)

Moments, part 1
I The true parameters (θ∗, α∗) satisfy:

(θ∗, α∗) = argmax
(θ,α)

Ex ,z [ln (αz f1z (xi ; θ1) f2z (xi ; θ1, θ2))] .

I By the law of total probability,

(θ∗, α∗) = argmax
(θ,α)

Ex

[∑
z

Pr (z |x ; θ∗, α∗) ln (αz f1z (xi ; θ1) f2z (xi ; θ1, θ2))

]
.

I The first-order conditions for θ2 is:∑
z

Pr (z |x ; θ∗, α∗)
∂ ln (f2z (xi ; θ

∗
1, θ2))

∂θ2
= 0.

I And θ1 can be estimated just from the f1 likelihood functions:∑
z

Pr (z |x ; θ∗, α∗)
∂ ln (f1z (xi ; θ1))

∂θ1
= 0.
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Arcidiacono and Jones (2003)

Moments, part 2

I A set of moments satisfied by the true parameters:

E



∑
z Pr (z |x ; θ∗, α∗)

∂ ln(f2z(xi ;θ∗1 ,θ2))
∂θ2∑

z Pr (z |x ; θ∗, α∗) ∂ ln(f1z (xi ;θ1))
∂θ1

Pr (1|x ; θ∗, α∗)− α1
...

Pr (Z |x ; θ∗, α∗)− αZ


= 0

I If the ESM algorithm converges, it converges to parameters satisfying
the empirical analog of these moments.

I ⇒ so now we’re talking about a GMM estimator, and the ESM
algorithm might be a useful tool to find the point estimate
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Arcidiacono and Jones (2003)

TABLE I

Simu l at ion Resu l t s

Estimation Method

Complete Incomplete FIML ESM

Mean ˆC N wN-8 N w9bw N wwkk N wwwx
Standard Deviation ˆC N NbbN N Nbwb N Nf9x N Nkxk
Mean Squared Error × :NN N ::f: N 9-b: N bN8w N bxx-
×FIML FLOPs1.×ESM FLOPs1 ww/f8

Note: Each simulation was conducted :NN times with bNNN observations/ The distributions of
unknown state variables were approximated with :N)point discrete distributions/ Mean squared error
refers to the squared differences between estimates of C and its true value of N/w/
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Arcidiacono and Jones (2003)

Further comments

I Some econometric models feature difficult likelihood functions but
easy sequential estimation approaches. ESM offers a way to extend
these estimation approaches to mixture models.

I ESM algorithm yields a GMM estimator which is less efficient
asymptotically than the maximum likelihood estimator

I ESM algorithm doesn’t have monotonicity property of EM algorithm
(don’t confuse ESM with ECM or GEM, which retain monotonicity)

I However, Arcidiacono and Jones find ESM still converges, and I have
experienced the same
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Identification of DDC models with unobserved heterogeneity

Identification of example 2: discrete choice with
heterogeneity

I Perhaps it’s intuitive how a mixture of normals is identified, but it’s
harder to see how a discrete choice model with unobservable
heterogeneity is identified

I Note: there is clearly no identification in a cross section. When the
aggregate probability of action j is .5, we could have homogeneous
agents who all have choice probabilities of .5, or the population could
be split between agents who always choose action j and agents who
never do.

I Thus, identification of discrete choice models with unobservable
heterogeneity comes from the panel data structure.
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Identification of DDC models with unobserved heterogeneity

Identification of example 2: discrete choice with
heterogeneity

I For a thorough treatment of identification of DDC models with
unobservable heterogeneity, see Kasahara and Shimotsu (2009),
"Nonparametric Identification of Finite Mixture Models of Dynamic
Discrete Processes"

I For more basic intuition, see Hall and Zhou (2003), "Nonparametric
Estimation of Component Distributions in a Multivariate Mixture."
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Arcidiacono and Miller (2011)

"Conditional Choice Probability Estimation
of Dynamic Discrete Choice Models
with Unobserved Heterogeneity"
Arcidiacono and Miller (2011)
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Arcidiacono and Miller (2011)

Overview

I They show how CCP-based estimation techniques for DDC models
can be adapted to deal with unobservable heterogeneity or
unobserved state variables with discrete distributions

I Their main approach is based on ESM algorithm, but they propose an
alternative two-stage approach in which the EM algorithm is only
used to estimate CCP’s in a first stage.

I They formalize the notion of finite dependence, which allows for
computationally simple applications of the Hotz-Miller inversion
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Arcidiacono and Miller (2011)

Notation

I θ - parameters to be estimated
I θ1 - parameters affecting state transitions
I θ2 - parameters of profit function

I z - mixing components

I αz - probability of component z

I djit - dummy for decision j by agent i in period t

I p (x , z) - choice probabilities conditional on observed state x and
unobserved state z

I l - log likelihood function

(Notation here slightly different than the paper.)
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Arcidiacono and Miller (2011)

E step

I Let’s take the likelihood function l
(
dit |xit , z ′, p̂(m−1), θ(m)

)
for

granted for now.

I E step is pretty standard:

q(m)
iz =

α
(m−1)
z

∏T
t=1 l

(
dit |xit , z ′, p̂(m−1), θ(m)

)
∑

z ′ α
(m−1)
z ′

∏T
t=1 l

(
dit |xit , z ′, p̂(m−1), θ(m)

)
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Arcidiacono and Miller (2011)

M step, first approach

α(m)
z =

1
N

N∑
i=1

q(m)
iz

θ(m) = argmax
θ

∑
i

∑
z

∑
t
q(m)

iz l
(
dit |xit , z ′, p̂(m−1), θ(m)

)
There are two options for updating p:

p(m)
j (x , z) =

∑
i
∑

t djitq(m)
iz I (xit = x)∑

i
∑

t q
(m)
iz I (xit = x)

p(m)
j (x , z) = l

(
dit |xit , z ′, p̂(m−1), θ(m)

)
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Arcidiacono and Miller (2011)

M step, second approach

I In the alternative approach, in the first stage EM estimation, we only
worry about estimating p, α, and θ1

I The utility function, θ2, is then estimated in a second stage, after the
EM algorithm has completed.
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Arcidiacono and Miller (2011)

Applying Hotz-Miller
I The likelihood function is based on the Hotz-Miller inversion, as we

have seen before.

I For example, let’s suppose logit errors and that action 0 is a terminal
action, always leading conditional payoffs of zero.

l (dit = j |xit , z ′, p, θ) =
exp(uj (x ,z;θ)+βE[V̄ (x ′,z;θ)+γ|j,x])∑
j′
exp(uj′ (x ,z;θ)+βE[V̄ (x ′,z;θ)+γ|j′,x])

=
exp
(

uj (x ,z;θ)+βE
[
ln
∑

j′′
pj′′(x ′,z)/p0(x ′,z)+γ|j,x

])∑
j′
exp
(

uj′ (x ,z;θ)+βE
[
ln
∑

j′′
pj′′ (x ′,z)/p0(x ′,z)+γ|j′,x

])
where I have used

V̄ (x ′, z ; θ) = ln
(∑

j′′ pj′′ (x ′, z) /p0 (x ′, z) exp (v0 (x ′, z , p, θ))
)

+ γ

= ln
∑

j′′ p (x ′, z) /p0 (x ′, z) + γ
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Arcidiacono and Miller (2011)

Finite Dependence

I We can always derive a relatively simple expression for the likelihood
function in terms of choice probabilities and the utility function, as
long as we have finite dependence.

I Finite dependence requires that there is always a sequence of actions
that, starting from two different initial actions, will lead to the same
state(s) in expectation within a finite number of periods.

I Renewal actions and terminal actions are particularly convenient
forms of finite dependence.
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