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EM Algorithm Introduction

Mixture model notation

X - observed variables

v

v

¢ - unobserved variables assumed to have finite support, Z

» 0 parameters of interest

> p(x;,¢i|f) - complete data likelihood for ith observation
> p(x;|@) - incomplete data likelihood for ith observation:
p(xi|0) = Z p (xi, z|0)
zeZ

> qi; (0) - expectation of incomplete data

qiz (0) = Pr (¢ = z|x;,0)

N)
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EM Algorithm Introduction

Example 1: mixture of normals

> 0= (u1, pi2, 0, 1)
» If zi =1, then x; ~ N (p1,0)
> If z; =2, then x; ~ N (2, 0)
>» Pr(zi=1)=o
ety
ozs} o
~ 1
0




EM Algorithm Introduction

Example 2: discrete choice with heterogeneity

» Panel of bus maintenance decisions indexed by (i, t)

> Xit = (dit, pt, Sit)
» di € {0,1} - agent i's action at time t
» p; - price of new bus engine
» s;i; - mileage on bus engine. s; € {0,1,...,90}

> zj - type of route bus takes. z; € {1,2}
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EM Algorithm Introduction

Example 3: collusion (Porter, 1983)

» Rob Porter (1983), "A Study of Cartel Stability: The Joint Executive
Committee, 1880-1886"

nQ: = ag+ailnPr+aols+ Urt
InP: = Po+ B1In Qs + B25: + B3l + Uot
where

» [;: demand shifters
> S;: supply shifters
» Il € {0,1} indicating whether the cartel was in a price war or not

> In previous notation,

» x¢ = (Q¢, Pt, Lt, St)
>z, =1t

» 0= (o, )

>

to deal with simultaneity, likelihood function p (x;, (;|0) is FIML
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EM Algorithm Introduction

Complete and incomplete data likelihoods

The incomplete data log-likelihood function or unconditional log-likelihood
function for a mixture model involves a sum within an expectation, which
makes it very hard to maximize with standard optimization algorithms:

L(x]0) = Zln (Zp (xi, z|0) >
The EM algorithm is based on the (expected) complete data log-likelihood
function:
(x,q|0) = ZZq,z p (xi, z]0)) .

Note that @ would simply be the log-likelihood function if ( were observed.
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EM Algorithm Introduction

EM Algorithm overview

» The EM algorithm starts with some initial guess for (%)

> In the E-step, we calculate expectations of the g's conditional on the
parameter values:

ay" = Pr (¢ =20t V).

» In the M-step, we maximize the value of the complete data likelihood

function:
(m) _ (m)
o\ = mé'ax Q (X, q ]0) .

» The EM Algorithm iteratively applies E and M steps until 8(m)
converges.
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EM Algorithm Introduction

EM Algorithm overview

v

As | will illustrate, the E and M steps are often easy computationally
(in contrast to maximization of incomplete data likelihood function).

v

Each EM iteration increases L (x|0).

v

Thus, iterating on the E and M steps will monotonically increase
L (x|9(m)), and 0(™ will typically converge to a local maximum of
L (x]0).

v

= EM Algorithm transforms a hard optimization problem into a
series of easy optimization problems
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EM Algorithm Introduction

Monotonicity

Monotonicity

L (x|0(m)) > L (x|0(m_1))



Monotonicity

EM Algorithm Introduction

Monotonicity

£ (x|otm) > £ (xjotm-1)

L (x|6(m)

=X (. p (416 6) p (616

L (m—1)y P(xil¢,6™ )p(<i16™)
> In (ZZP (C: = z|x,0 ) p(Cr=zlx, 01

_ m—1 p(XiIC,-,G(’”))p(giw(m))
= Zi ZZ'D (C' o Z|X’9( )) In ( p(Ci=z|x,0(m=1))

where the inequality follows from Jensen's inequality
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EM Algorithm Introduction

Monotonicity

L(40M) = Sy (S, p (616 00) p (GO™))

= o me1)y P(x1¢,0)p(¢i100™)
= >;n (ZZP (¢ = z|x,0(m=1) p(Cmzlx,60-D)

o m—1 p(xi1¢i,0™)p(cil6™)
> (6= o) n (Al

o (m—1) p(xl¢i0' "M )p(¢io" )
> Ei Zz p (C’ - Z|X’ 0 ) In ( p((,-=z|x,9("'*1))

where the second inequality follows because 6(™ is selected to maximize

>3 p (6= 2bx 870 ) n(p (x16:.0) p (G16)
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Monotonicity

L (x|etm)

\%

Y

EM Algorithm Introduction

S0 (3, p (%G 00M) p (¢ilOt™

Sin (zz p (G = 2lx, 60" V)
S5 p (G = 2], 0D In (

S, p (G = z|x,00m D) In (

L (x|6(m=1)

)

p(¢i=2|x,00-D)

(16,6 )p(i16¢™) )

p(( =z|x,0(m— 1))

p (11,6 )p( 116" ))>

p(Ci=z|x,00m=1)

O T (o))
)
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EM Algorithm Introduction

Estimation of example 1: mixture of normals

> 0 = (1, 2,0, 1)

» If zz =1, then x; ~ N (p1,0)
» If z; =2, then x; ~ N (2, 0)
» Pr(zi=1)=o

In the E step, we just apply Bayes's Theorem to find g's

ql({") = Pr (Z,' = ]_|X,-,9(m)> —

o™ f (1™ o
agm)f (Xl"p’gm) 70-(171)) + (l_agm)) f (Xinm)yO'(m))

where f (x|p, o) is the density at x of the normal distribution with mean g

and standard deviation o2.
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EM Algorithm Introduction

Estimation of example 1: mixture of normals

> In the M step, maximizing the complete data likelihood function
amounts to taking weighted means:

Z q(m)

o(m — J 3,0 aw” (xi — pz)’
Zz Zi qlgzm)

agm) — Nt Z qI(Zm)
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EM Algorithm Introduction

Estimation of example 1: mixture of normals

> Note: in a mixture model with covariates that enter linearly, the M
step involves weighted OLS instead of a weighted mean

» Bottom line: E and M step are both easy computationally, so
iterating on them goes quickly.

> In general, the EM algorithm can stop at local maxima, so some care
is needed to ensure a global optimum is attained (e.g., multiple
starting points).
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Arcidiacono and Jones (2003)

"Finite Mixture Distributions, Sequential Likelihood
and the EM Algorithm"
Arcidiacono and Jones (2003)
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Arcidiacono and Jones (2003)

Setup

v

X;: ith observation
» z: mixture component

fz (xi; 01,02) = fiz (xi; 01) f2z (xi; 01, 62) distribution function of x for
component z

v

v

a: unconditional probability of component z

v

n.b., different notation from the paper
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Arcidiacono and Jones (2003)

Sequential estimation background

» Forget about the mixture model for this slide:
f (xi;01,02) = f1 (x;; 01) f2 (xi, 01, 02)
» We could estimate 6; and 0, by choosing them to jointly maximize
>.iInf, or we could estimate:

b, = maxg, . In fi (x;; 01)
52 = maxg, y. Inf (x,-; 51,02)

> e.g., Hotz and Miller: conditional choice probabilities are estimated
before profit function is estimated.
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Arcidiacono and Jones (2003)

Sequential M step

> Main idea: combine sequential estimation and EM algorithm.

» Normal EM algorithm would estimate (ng),ﬁgm)) to jointly maximize

(m) p(m)\ _ (m) : }
(01 .05 )—arg(gﬁﬁ)zgqiz In (fiz (xi;01) f2z (xi; 01, 62))

» Arcidiacono and Jones's ESM algorithm estimates (eg’”),eg’”)) to
satisfy:

Hj([m) = arg maXg, Zi Zz qlgzm) In (f]-z (Xi; 91))

9§m) = argmaxg, ;i >., qum) In (fgz (x,-; Hgm), 92))

» Does this strategy work? What are its asymptotic properties?
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Arcidiacono and Jones (2003)

Moments, part 1

» The true parameters (6*, ™) satisfy:

(‘9*7 Oé*) = arg Ega)§ Ex,z [In (azflz (Xi; 91) f22 (Xi; 01, 02))] .

)

» By the law of total probability,
(6%, a") = arg {22); E, g Pr(z|x; 0%, ") In (a fi; (Xi; 01) fz (Xi; 61,602)) | -

» The first-order conditions for 65 is:

> Pr(zlx; 6, a%) Oln Uhgg; 01,62)) _ 0.
Z 2

» And 61 can be estimated just from the f; likelihood functions:

> Pr(z]x; 6, %) Oln (ﬂge(x,-; o)) _ 0.
~ 1
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Arcidiacono and Jones (2003)

Moments, part 2

» A set of moments satisfied by the true parameters:

9In(foz(xi;:0,602))

2 Prizba 7, 7) D (e Ges00))
T n(fiz(xi;
3o, Pr(z|x; 0%, o) =Ras il

E Pr(1|x; 0%, a*) — a3 =0
Pr(Z|x;0%,a*) — az

> If the ESM algorithm converges, it converges to parameters satisfying
the empirical analog of these moments.
» = so now we're talking about a GMM estimator, and the ESM

algorithm might be a useful tool to find the point estimate
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Arcidiacono and Jones (2003)

TABLE |

Simul ation Results

Estimation Method

Complete Incomplete FIML ESM
Mean “. 02078 02932 02255 02226
Standard Deviation "¢ 00330 00323 0 0496 00565
Mean Squared Error x 100 01141 09731 03082 0 3667
(FIML FLOPs)/(ESM FLOPs) 2248

Note: Each simulation was conducted 100 times with 3000 observations. The distributions of
unknown state variables were approximated with 10-point discrete distributions. Mean squared error
refers to the squared differences between estimates of ¢ and its true value of 0.2.
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Arcidiacono and Jones (2003)

Further comments

» Some econometric models feature difficult likelihood functions but
easy sequential estimation approaches. ESM offers a way to extend
these estimation approaches to mixture models.

» ESM algorithm yields a GMM estimator which is less efficient
asymptotically than the maximum likelihood estimator

» ESM algorithm doesn’t have monotonicity property of EM algorithm
(don't confuse ESM with ECM or GEM, which retain monotonicity)

» However, Arcidiacono and Jones find ESM still converges, and | have
experienced the same
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Identification of DDC models with unobserved heterogeneity

|dentification of example 2: discrete choice with
heterogeneity

» Perhaps it's intuitive how a mixture of normals is identified, but it's
harder to see how a discrete choice model with unobservable
heterogeneity is identified

» Note: there is clearly no identification in a cross section. When the
aggregate probability of action j is .5, we could have homogeneous
agents who all have choice probabilities of .5, or the population could
be split between agents who always choose action j and agents who
never do.

» Thus, identification of discrete choice models with unobservable
heterogeneity comes from the panel data structure.
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Identification of DDC models with unobserved heterogeneity

|dentification of example 2: discrete choice with
heterogeneity

» For a thorough treatment of identification of DDC models with
unobservable heterogeneity, see Kasahara and Shimotsu (2009),
"Nonparametric Identification of Finite Mixture Models of Dynamic
Discrete Processes"

» For more basic intuition, see Hall and Zhou (2003), "Nonparametric
Estimation of Component Distributions in a Multivariate Mixture."
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Arcidiacono and Miller (2011)

"Conditional Choice Probability Estimation
of Dynamic Discrete Choice Models
with Unobserved Heterogeneity"
Arcidiacono and Miller (2011)

26
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Arcidiacono and Miller (2011)

Overview

» They show how CCP-based estimation techniques for DDC models
can be adapted to deal with unobservable heterogeneity or
unobserved state variables with discrete distributions

» Their main approach is based on ESM algorithm, but they propose an
alternative two-stage approach in which the EM algorithm is only
used to estimate CCP’s in a first stage.

» They formalize the notion of finite dependence, which allows for
computationally simple applications of the Hotz-Miller inversion
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Arcidiacono and Miller (2011)

Notation

» 0 - parameters to be estimated

» 6 - parameters affecting state transitions
» 0, - parameters of profit function

> z - mixing components

v

«, - probability of component z

v

dji - dummy for decision j by agent i in period t

v

p(x, z) - choice probabilities conditional on observed state x and
unobserved state z

> | - log likelihood function

(Notation here slightly different than the paper.)
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Arcidiacono and Miller (2011)

E step

> Let's take the likelihood function / (d,-t]x,-t,z’, ,s(mfl),e(rm) for
granted for now.

» E step is pretty standard:

(m) afm Y [,/ (dit|XitaZ/7 plm=1), 9('")>

qiz - m—
D ozi, 2 HZ—:1 / (dit|Xita z, ﬁ(m_l)y Q(m))
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Arcidiacono and Miller (2011)

M step, first approach

15 m)
agm):N;qiz

e(m) — a8 meax Z ; ; ql(zm)l (dit|xit7 2/7 ﬁ(mil)’ H(m)>

There are two options for updating p:

XX g™ (xie = x)
5 qe (xie = x)

X, z)

™ (x,2) = I (dielxie, 2/, B0, 6™
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Arcidiacono and Miller (2011)

M step, second approach

> In the alternative approach, in the first stage EM estimation, we only
worry about estimating p, «, and 6;

» The utility function, 05, is then estimated in a second stage, after the
EM algorithm has completed.
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Arcidiacono and Miller (2011)

Applying Hotz-Miller

» The likelihood function is based on the Hotz-Miller inversion, as we

have seen before.

> For example, let's suppose logit errors and that action 0 is a terminal

action, always leading conditional payoffs of zero.

exp(uj-(x,z;0)+ﬁE[\_/(x' ,2;0)+’y\j,x])

- = lx; / = —
/(dlt ./|Xlt7 z,p, 9) Zj/ exp(uj/(x,z;9)+BE[V(X/,z;9)+’y\j/,x])

exp(u/(x,z;B)JrBE [In Zj,, Py (x',z)/pg(x',z)+v\j,x] )

Zj/ exp(uj/ (x,z;0)+BE [In Zj,/ pj//(X',Z)/po(X',Z)+’YU',X:| )

where | have used

V(x',z;0)

In (ZJ.,, piv (X' z) [po (X', z) exp (vo (X, 2, p, 9») +

— Inzj,,p(x’,z)/po(x',Z)Jr’Y

32/33



Arcidiacono and Miller (2011)

Finite Dependence

» We can always derive a relatively simple expression for the likelihood
function in terms of choice probabilities and the utility function, as
long as we have finite dependence.

» Finite dependence requires that there is always a sequence of actions
that, starting from two different initial actions, will lead to the same
state(s) in expectation within a finite number of periods.

» Renewal actions and terminal actions are particularly convenient
forms of finite dependence.
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