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Pakes (2010)

Two versions of Moment Inequalities

Pakes describes two approaches, both making use of moment inequalities:
1. Generalized Discrete Choice

Extends discrete choice models to multi-agent settings (e.g., entry
models). Typically, inequalities result because models don’t predict
unique outcomes.

2. Profit Inequalities
Makes use of "revealed preference inequalities" which can be
constructed with relatively mild assumptions about agents’
information sets. Robust to measurement error.
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Pakes (2010)

Katz’s supermarket choice example I
I An agent’s decision di = (bi , si ) consists of a basket of goods bi and

a supermarket si where the goods where purchased.

I An agent with characteristics zi has utility is given by

π (di , zi , θ) = U (bi , zi )− e (bi , si )− θdt (si , zi )

where
I dt (si , zi ) is the drive time to the store;
I U (bi , zi ) is utility from the bundle;
I e (bi , si ) is the cost of the bundle at the store.

I Assuming the agent chooses di to maximize utility, and d ′ is some
other feasible option,

π (di , zi , θ) ≥ π
(
d ′, zi , θ

)
.

We can choose particular alternatives for d ′ to form moment
inequalities which may be used for estimation.
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Pakes (2010)

Katz’s supermarket choice example II

I Consider the option of buying the same bundle at a different store s ′i ,
and write out the utility difference:

E
[
∆π

(
b, si , s ′i , zi

)
|Ji
]

= E
[
∆e

(
b, si , s ′i

)
− θ∆dt

(
si , s ′i , zi

)
Ji
]
.

where E is the agent’s expectation operator, and Ji is her information
set.

I Define ν1,i ,s,s′ as the difference between the expected and realized
utility difference:

ν1,i ,s,s′ ≡ ∆π
(
b, si , s ′i , zi

)
− E

[
∆π

(
b, si , s ′i , zi

)
|Ji
]
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Pakes (2010)

Katz’s supermarket choice example III

I Assuming that
N−1∑

i
ν1,i ,s,s′ →P 0,

and that s ′i is sampled so that it is always has a longer drive time
than si ,

−
∑

i ∆e (bi , si , s ′i )∑
i ∆dt (si , s ′i , zi )

→P
¯
θ ≤ θ

... why?

I Similarly, if we sample s ′′i so that it is always a shorter drive time,

−
∑

i ∆e (bi , si , s ′i )∑
i ∆dt (si , s ′i , zi )

→P θ̄ ≥ θ
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Pakes (2010)

Katz’s supermarket choice example IV
I Suppose we add an error term in drive time which is known to the

agent but unobserved to the econometrician:

θi = θ + ν2,i

I Then, assuming drive time is known to the agent at the time of the
decision,

N−1∑
i

∆dt
(
si , s ′i , zi

)−1
ν1,i ,s,s′ →P 0

I ... and we get a different formula for the bounds on θ:

N−1∑
i

(
∆e (bi , si , s ′i )
∆dt (si , s ′i , zi )

)
→P

¯
θ ≤ θ

N−1∑
i

(
∆e (bi , si , s ′′i )

∆dt (si , s ′′i , zi )

)
→P θ̄ ≥ θ
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Pakes (2010)

Comments on Katz’s supermarket choice example

I The ν2 errors may be correlated with the choices. This may be
important if we think there is heterogeneity in drive time aversion
which will affect store choice.

I The model is compatible with uncertainty about prices; we only
require that agents aren’t systematically wrong.

I To use a standard discrete choice model in this setting requires lots of
simplifying assumptions. The problem comes from having a huge
choice space when we consider different bundles and different stores.
However, using revealed preference inequalities allows us to identify
some parameters of interest without modeling the whole choice
problem.
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Pakes (2010)

Moment inequalities: common assumption I
I There are two assumptions involved by both the Profit Inequalities

and Generalized Discrete Choice Approach. First, there is an
optimality condition.

C1

sup
d∈Di

E [π (d ,d−i , zi , θ0) |Ji ] ≤ E [π (di = d (Ji ) ,d−i , zi , θ0)]

where
I di = d (Ji ) is the observed decision
I d−i are the actions of other agents (in a multi-agent setting)
I zi are some variables affecting profits
I Ji is the decision maker’s information set

I Note: boldface variables are random from the decision maker’s
prospective.
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Pakes (2010)

Moment inequalities: common assumption II

I Next, we have a condition that requires that we can predict responses
to deviations

C2
d−i = d−i (d , zi , θ), and the distribution of zi conditional on (Ji , di = d)
does not depend on d .

I C2 requires a model of how endogenous variables (potentially yi and
d−i) would respond to a deviation in di , and zi must be exogenous.

I Note that C2 is much more demanding in games than in single-agent
applications. More so in sequential games than simultaneous-move
games.
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Pakes (2010)

Constructing moment inequalities

I Define

∆π (di , d ′, d−i , zi , θ0) ≡
π (di , d−i , zi , θ0)− π

(
d ′, d−i (d ′, z) , zi , θ0

)
.

I C1 and C2 imply the inequality

E
[
∆π

(
di , d ′, d−i , zi , θ0

)
|Ji
]
≥ 0 ∀d ′ ∈ Di

I Before we have something we can estimate, we need
I a measurement model specifying the relationship between the true

values of π and our measures of them
I a relationship between the decion maker’s expectation operator and the

sample moments we can construct from the data
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Pakes (2010)

Measurement models
I The econometrician’s measure of profits is r . We assume the

following relationship between r and π:

r (d , d−i , zo
i , θ) = π (d , d−i , zo

i , θ) + ν (d , d−i , zo
i , zi , θ) .

I The agent’s decision is based on E [π (d ,d−i , zi , θ)], so let’s write this
another way:

r (d , d−i , zo
i , θ) ≡ E [π (d ,d−i , zi , θ)] + ν1,i ,d + ν2,i ,d

where

ν1,i ,d = (π (d , ·)− E [π (d , ·) |Ji ]) + (ν (d , ·)− E [ν (d , ·) |Ji ]) ,

and
ν2,i ,d = E [ν (d ,d−i , zo

i , zi , θ) |Ji ] .
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Pakes (2010)

Error terms

I ν1 errors combine expectational error and measurement error – they
are mean independent of Ji

I e.g., the realizations of prices in stores the shopper didn’t visit

I ν2 errors are observed by the agent but not the econometrician
I e.g., an unobservable variable which shifts an agent’s personal disutility

of drive time.
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Pakes (2010)

Generalized discrete choice: expectations

DC3
∀d ∈ Di ,

π (d , d−i , zi , θ0) = E [π (d ,d−i , zi , θ0) |Ji ]

which says that there is no uncertainty in exogenous variables zi or in
competitor’s decisions d−i .
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Pakes (2010)

Generalized discrete choice: measurement

DC4
∀d ∈ Di , r (d , d−i , zo

i , θ) = π (d , d−i , zi , θ + ν1,i ) for a known π (·, θ) and
zi =

(
{ν2,i ,d}d , z

o
i
)
with (ν2,i ,d , ν2,−i ,d )d ,zo

i ,zo
−i
∼ F (·; θ) for a known

F (·, θ).

which says that differences in profits are measured exactly (no d subscript
on ν1. Furthermore, any unobserved components of the profit function
have a known distribution.

I It is difficult to accommodate measurement error here.

I DC3 and DC4 set up the following model:∀d ′ ∈ Di ,

∆π
(
di , d ′, d−i , zo

i , ν2,i ; θ0 ≥ 0
)

; (ν2,i , ν2,−i ) |zo
i ,zo
−i
∼ F (·; θ0)
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Pakes (2010)

Profit inequalities: expectations

PC3
There is a positive valued h (·) and an xi ∈ Ji for which

N−1∑
i E [∆π (di , d ′,d−i , zi , θ0) |xi ] ≥ 0

⇒ E
(
N−1∑

i π (di , d ′,d−i , zi , θ0) h (xi )
)
≥ 0

which is weaker than DC3 in that it allows for some uncertainty – the
actual profit inequalities don’t have to actually be positive all the time.

I One theory justifying PC3 is correct/rational expectations, which
would mean that any xi in the information set can be used to form
valid instruments h (xi ). However Pakes emphasizes that weaker
assumptions are compatible with PC3 – e.g., agents can have
incorrect expectations, but their mistakes can’t be systematically
related to xi .
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Pakes (2010)

Profit inequalities: measurement

Pakes considers different versions of PC4, I just want to focus on one:

PC4a (differencing)
Let g = 1, . . . ,G index groups of observations. For each g , there are
positive weights wi ,g ∈ Ji ,g such that

∑
i∈g wi ,g ×∆ν2,i ,g ,di,g ,d ′i,g = 0.

Thus,

G−1∑
g

∑
i∈g

wi ,g
(

∆r
(
di ,g , d ′i ,g , ·; θ0

)
− E

[
∆π

(
di ,g , d ′i ,g , ·; θ0

)
|Ji ,g

])
→P 0

provided that G−1∑
g
∑

i∈g wi ,g ∆r
(
di ,g , d ′i ,g , ·; θ0

)
obeys a law of large

numbers.
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Pakes (2010)

Comparisons

I Note that PC3 nests DC3 – the profit inequality approach allows for
some errors in agents’ expectations and it naturally incorporates
measurement error.

I The measurement assumptions are not nested. PC4a assumes a
particular structure for the ν2 errors which allows us to elimate them.
DC4 assumes a particular distribution for the ν2 errors which allows
us to evaluate the probability of a particular realization if ν2.
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Ho and Pakes (2013)

Brief example: Ho and Pakes (2013)
I Ho and Pakes consider a patient i ’s utility from hospital choice h:

Wi ,m,h = θp,mp (ci , h,m) + gh,m (si ) + fm (d (li , lh))

where
I m is the insurance provider;
I p (ci , h, π) is the price charged by the hospital to the insurer for

condition ci ;
I gh,m is a hospital-insurer fixed effect for a condition of severity si ;
I fm (·) is a function capturing the disutility of distance between the

patient and hospital’s locations
I Ho and Pakes are interested in how different types of contracts

between medical care groups and insurers affects price sensitivity
(some insurers provide more incentives for doctors to control costs);
hence, the dependene of θp,m. The subscript on fm also allows the
convenience-price tradeoff to vary with the type of insurer.
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Ho and Pakes (2013)

Brief example: Ho and Pakes (2013)

I Let Sm (h, h′, s) be the set of patients from plan m with severity s
who chose hospital h but had h′ in their choice set.

I Let ∆x (i , h, h′) = xi ,h − xi ,h′ for x ∈ {W , p}
I Let ∆fm (li , lh, lh′) = fm (d (li , lh))− fm (d (li , lh′))

I Choosing i ∈ Sm (h, h′, s) and i ′ ∈ Sm (h′, h, s),

∆W (i , h, h′) + ∆W (i ′, h′, h) =

θp,m [∆p (ci , h, h′) + ∆p (ci ′ , h′, h)] + ∆fm (li , lh, lh′) + ∆fm (li ′ , lh′ , lh)

I Then, estimation is based on

E
[
∆W

(
i , h, h′

)
+ ∆W

(
i ′, h′, h

)]
≥ 0
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Morales et al. (2011)

Brief example: Morales et al. (2011)
I Morales, Sheu, and Zahler consider a dynamic decision problem in

which a firm i decides which countries j to export to in period t.
There are fixed and sunk costs associated with entering an export
market.

I Net profits of exporting to j depends on the set of countries bi ,t−1
exported to in the previous period:

πijt (bt−1) = vijt − fcijt − I {j /∈ bt−1} scijt

where vijt depends on the prices and costs for the firm’s sector in
country j in period t (think of v as data, or see the paper for details).

I There is also a “basic cost” (startup cost) to becoming an exporter.
Profits to exporting are:

πit (bt , bt−1) =
∑
j∈bt

πijt − I {bt−1 = ∅} bcit
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Morales et al. (2011)

Brief example: Morales et al. (2011)

I Morales et al consider one-period deviations from the observed
(optimal) path of export decisions. If the observed path for a firm is

{b1, . . . , bt , bt+1, . . . , bT} ,

they consider {
b1, . . . , b′t , bt+1, . . . , bT

}
.

I Note that this involves either delaying or bringing forward some sunk
costs and net profits. Only profits in periods t and t + 1 are affected.
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Morales et al. (2011)

Brief example: Morales et al. (2011)

I They define inequalities:

∆πit (bit , b′) =

πit (bit , bit−1)− πit (b′t , bit−1) + δ (πit+1 (bit+1, bit)− πit+1 (bit+1, b′))

I Then estimation is based on

E
(
∆πit

(
bit , b′

))
≥ 0

I The crucial assumption is that agents make the correct decisions on
average, from the perpsective of their dynamic problem. Theory only
delivers that E (∆πit (bit , b′) |Jit) ≥ 0.
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Crawford and Yurukoglu (2013)

"The Welfare Effects of Bundling in Multichannel Television Markets"
Crawford and Yurukoglu (2013)
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Crawford and Yurukoglu (2013)

Overview

I The welfare effecgs of bundling are ambiguous in theory, calling for
empirical work.

I Crawford and Yurukoglu quantify the effects of forced unbundling (à
la carte pricing) of TV stations. This involves many moving parts:

I Consumer demand for stations and bundles.
I Bargaining between distributors (e.g., cable services) and content

providers (conglomerates of channels)
I Optimal pricing by distributors
I Entry and exit of distributors or channels (ignored)
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Crawford and Yurukoglu (2013)

Main findings

I Estimated surplus change from -1.7% and 6.0%.

I If we were to take input costs as fixed (the prices content providers
provide distributors) there would be large gains from à la carte as
consumers would save money buying only a smaller set of channels.

I but the input costs rise dramatically in the new equilibrium, canceling
out the potential gains.
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Crawford and Yurukoglu (2013)

Viewing
I Consumer’s utility function:

vij (tij) =
∑
c∈Cj

γic log (1 + tijc) ,

where tijc is the number of hours household i watches channel c
conditional on having access to bundle j . Note: this specification is
compatible with corner solutions for some channels. They also include
the outside option of not watchig tv as c = 0.

I We can then define the utility of a given bundle as

v∗ij (γi ,Cj) =
∑
c∈Cj

γic log
(
1 + t∗ijc

)

where t∗ijc is the optimal amount of time to watch channel c if
subscribed to j
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Crawford and Yurukoglu (2013)

Bundle choice

I In addition to heterogeneous viewing tastes, there is heterogeneity in
price sensititivity: αi = α + πpyi , where yi is income.

I BLP-like aggregation to market shares:

sjndm =

ˆ exp (δjndm + µijndm) dF n (i)
1 +

∑
j′ exp

(
δj′ndm + µij′ndm

)
where

I δjdnm = z ′jndmψ + αpjndm + ξ
I µijndm = v∗ijndm + πpyipjndm
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Crawford and Yurukoglu (2013)

Demand estimation: viewing

I To estimate the distribution of γi , they assume

γi = χi ◦ (Πoi + νi )

where oi are household-level demographics, and

χic =

{
0 with prob ρoi c

1 with prob 1− ρoi c

I They the estimate ρ, together with parameterized disrtibutions for the
ν’s (allowing for a some correlation).
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Crawford and Yurukoglu (2013)

Demand estimation: selection

I Note the potential for selection into bundles with channels that
selected households have strong preferences for. To deal with this,
they match conditional moments.

I That is, what they can construct with data are moments which
involve the time spent on channels conditional on bundle selection,
and the estimation is based on simulation of these same moments.

I This means they estimate the viewing parameters and bundle choice
parameters jointly.

I To estimate bundle price sensitivity αi , the assume that the
bundle-market shocks ξ are independent of non-price characteristics
and the prices in nearby markets (Hausman instruments).

I What does this assumption require economically?
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Crawford and Yurukoglu (2013)

Distributors

I Distributors engage in Nash-Bertrand competition.

I Variable profits for a distributor:

Πfndm (bndm,pndm) =
∑

j∈bfndm

pjndm −
∑

c∈Cjndm

τfc

 sjndm (bndm,pndm)

I Implicit in this is assumption that contracts with channels involve
costs-per subcribed τfc

I Given demand parameters and prices of each bundle, can recover
m̂c fndm =

∑
c∈Cjndm

τfc
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Crawford and Yurukoglu (2013)

Bargaining between distributors and channels
I Let K represent a conglomerate of channels. They assume each

distributor and conglomerate negotiate separately and arrive at the
Nash bargaining solution.

I Formally, τfK mazimizes

[Πf (τfK ; Ψ−fK )− Πf (∞; Ψ−fK )]ζfK [ΠK (τfK ; Ψ−fK )− ΠK (∞; Ψ−fK )]1−ζfK

where Ψ−fK are the input prices set in all other bilateral contracts,
Πf =

∑
ndm Πfndm, and

ΠK (τfK ; Ψ−fK ) =
∑
c∈K

(∑
f
τfcQfc (Ψ) + rad

c tc (Ψ)

)

where the rates of advertising payments rad
c are assumed to be

exogenous.
I Note that the ζ’s allow for asymmetric bargaining power.
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Crawford and Yurukoglu (2013)

Rationalizations of Nash bargaining

I Rubinstein (1982) gives a rationalization of the Nash bargaining
solution in a two-agent setting.

I Agents take turns making offers which the other agent can accept or
reject

I If agents are sufficiently patient, they will immediately agree on the
Nash bargaining solution

I Collard-Wexler, Gowrisankaran, and Lee (2013) consider a
multi-agent extension which can rationalize the use of Nash
bargaining in a setting like Crawford and Yurukoglu’s.
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Crawford and Yurukoglu (2013)

Cost estimation

I Viewing and bundle demand estimated jointly. This allows them to
infer marginal costs for each bundle, which are sums of the
channel-specific costs.

m̂c fndm =
∑

c∈Cjndm

τfc

I They then parameterized a model of τ̂fc (η, ϕ) based on observed
average input costs, distributor size, and ownership shares (some
distributor’s companies own some cable channels).

I To estimate, they build moments matching the backed-out m̂c fndm to∑
c∈Cjndm

τfc (η, ϕ)
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Crawford and Yurukoglu (2013)

Cost estimation I

I Viewing and bundle demand estimated jointly. This allows them to
infer marginal costs for each bundle, which are sums of the
channel-specific costs.

m̂c fndm =
∑

c∈Cjndm

τfc

I They then parameterized a model of τ̂fc (η, ψ) based on observed
average input costs, distributor size, and ownership shares (some
distributor’s companies own some cable channels).

I To estimate, they build moments matching the backed-out m̂c fndm to∑
c∈Cjndm

τfc (η, ψ)
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Crawford and Yurukoglu (2013)

Cost estimation II

I They also use moment inequalities to assist with cost estimation.
Note that A distributor could add or subtract channels from the
bundles it offers (conditional on having a contract with the channel
providers).

I Following Pakes’s (2010) notation,

Πfndm (bfndm,b−fndm,pfndm,p−fndm) =

rfndm (bfndm,b−fndm,pfndm,p−fndm) + νfndmb,1 + νfndmb,2

where r is the constructed function.
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Crawford and Yurukoglu (2013)

Cost estimation III

I Assuming the ν2 error are constant for all bundles for a given
distributor and market, they will cancel. Then, assuming that the ν1
errors are zero on average, they can use

E
[
∆rfndm

(
b, b′

)
+ ∆rfndm′

(
b′, b

)]
≥ 0

for estimation. Specifically:

min

0, J−1∑
j

∆rfndm
(
bjndm, b′; η, ϕ

)
+ ∆rfndm′

(
b′, bjndm; η, ϕ

) = 0
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