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Partial Identification in Econometrics I

The traditional approach in statistics and econometrics is to consider
models that are point identified.
Given an infinite amount of data, in such models one can always
infer without uncertainty what the values of the objects of interest
are.
Uncertainty about the true value of a parameter is thus only due to
using a finite data set.
Researchers traditionally felt uncomfortable about models in which
point identification fails.
They have therefore often added additional assumptions to their
models that have identifying power, even if they are not well justified
by economic theory.
Problem: Empirical results might be driven by a priori assumptions,
and not by the data.

Two researchers using the same data set might come to different
conclusions, depending on which additional assumptions they impose.
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Partial Identification in Econometrics II

It is therefore important to find out what conclusions can be drawn
about a research question under weaker or minimal assumptions.
This sometimes means that one has to give up point identification.
That is, one has to work with a model where it is not possible to
infer the true value of the parameter of interest even with an
infinitely large data set.
Such models are not useless!
The data might reveal some non-trivial insights about the objects of
interest, even though they do not allow for an exact quantification.
This perspective is called partial identification.

Partial identification occurs in many areas of applied econometrics:
measurement error model,
missing data models,
treatment effects,
market entry games,
Economic models with inequalities.
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Partial Identification in Econometrics III

Partial identification analysis is about finding out which values of the
true parameter of interest are compatible with the observations we
made.

How can we obtain the identified set?
Partial identification also poses new challenges for estimation and
inference:

How can we obtain “estimates” in a setting where consistent
estimation is impossible?
How can we test an hypothesis about the parameter of interest?
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Linear Error-in-Variables Models I

Frisch (1934) studied linear regression problems when variables are
measured with error.
Suppose that there is a linear model

Y ∗ = β1 +β2X∗+ε

where Y ∗,X∗,ε are scalar and E [ε] = 0, E [X∗ε] = 0.
Assume that both Y ∗ and X∗ are observed with error:

Y = Y ∗+ ∆Y
X = X∗+ ∆X

Here ∆Y and ∆X are unobserved measurement errors that are
uncorrelated with the other primitives of the model.
Question: What can we learn from observing (Y ,X ) about the
slope parameter β2 in the true regression?
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Linear Error-in-Variables Models II

Inconsistency of conventional regression
The true model implies

Y = β1 +β2X +ε+ ∆Y −β2∆X︸ ︷︷ ︸
W

.

and if we regress Y on X :

plim β̂2 = β2 +
Cov(X ,W )

Var(X )
.

Moreover:

Cov(X ,W ) = Cov(X∗+ ∆X ,ε+ ∆Y −β2∆X )

=−β2Var(∆X ).
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Linear Error-in-Variables Models III

so that

plim β̂2 = β2−β2
Var(∆X )

Var(∆X ) + Var(X∗) = β2
Var(X∗)

Var(∆X ) + Var(X∗) .
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Linear Error-in-Variables Models IV

Observations

Standard regression is inconsistent in the presence of measurement
error.
The slope coefficient is biased towards zero (i.e. any relationship is
attenuated).
Rejection of significance is still reliable but the power is reduced.
Classical measurement error in the dependent variable has no effect
Caution: Direction of the bias is not obvious in multivariate settings.
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Linear Error-in-Variables Models V

One solution: bounds on β2 Notice that there exists other solutions
(outside information related to the error variance, instrumental variables
that are not correlated with the measurement error, higher-order
moments, repeated measurements,etc.). See the papers of S. Schennach
and/or J. Hu.
The structure of the model gives three equations related to the second
moments of observables:

Var(Y ) = β2
2Var(X∗) + Var(∆Y ) (1)

Var(X ) = Var(X∗) + Var(∆X ) (2)
Cov(X ,Y ) = β2Var(X∗) (3)

(1) + (3)→ Var(Y ) = β2Cov(X ,Y ) + Var(∆Y ) (4)
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Linear Error-in-Variables Models VI

Two inequalities can be derived using the fact that a variance is positive:
Var(∆X )≥ 0 and, in this case,

β2 ≥
Cov(X ,Y )

Var(X )

.
Var(∆Y )≥ 0 and, in this case,
The identified set of the slope coefficient is thus given by[

Cov(Y ,X )

Var(X )
,

Var(Y )

Cov(Y ,X )

]
.
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Linear Error-in-Variables Models VII

Comments

This set is sharp: no value in this set, including the end points, can
be rejected as the true slope parameter β0.
We get the upper and lower bound of Var(∆X ) = 0 and
Var(∆Y ) = 0, respectively.
Even with large samples, we cannot point identify the slope value.
To obtain point identification, literature on measurement errors uses
two principal approaches
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Road Map

1 Some (usual) examples of interest
2 The Moment inequality approach

The original paper
Andrews and co.
further discussion

3 Convexity and the support function approach
4 Conclusion and perspective
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A more formal definition I

Consider an observable random vector Z ∈ Rd , distributed according
to some probability measure P0, i.e. FZ (z) = P0(Z ≤ z).
Let P be a model for the underlying probability measure. That is,
we assume that P0 ∈ P.
A model is simply the collection of all probability measures that are
compatible with the assumptions we make.
In addition to the observable random vector Z ∈ Rd , there may also
be unobservable random objects whose distribution is also
determined by the probability measure P0.
Suppose we want to learn θ0 = Γ(P0).
This parameter could be finite or infinite dimensional, taking values
in the space Θ = {Γ(P) : P ∈ P}.

Point identification approach: Show that θ0 can be written in
terms of the distribution of observed outcomes, i.e. θ0 = ν(FZ ).
In partially identified models, such a relationship may not exist.
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A more formal definition II

There might be probability measures P,P ′ ∈ P such that
Γ(P) 6= Γ(P ′), but P(Z ≤ z) = P ′(Z ≤ z) for all values of z .
In this case, we are unable to pin down the exact value of θ0 even in
large samples, but we might be able to learn the values that are
compatible with the distribution of observables.
These are given by the set

ΘI = {Γ(P) : P ∈ P and P(Z ≤ z) = FZ (z) for all z}.

We call ΘI the identified set.
Furthermore, we say that

θ0 is point identified if ΘI is a singleton,
θ0 is not identified if ΘI = Θ,
θ0 is partially identified if ΘI ⊂Θ.

Under partial identification, the identified set can have a complicate
forms.
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A more formal definition III

One of the most important challenges when working with partially
identified models is to find a simple characterization for the
identified set.
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Examples

Partial identification issues were studied as early as in the 1930’s
(and probably earlier).
This research had little impact on applied economics.

Recent interest in partial identification started with the work of
Manski in the 1990’s.

We now consider two of the leading examples considered in this
literature. Additional examples are

Bounds on the Joint CDF with given Marginals
Missing Data and Treatment Effects
Linear Models with Interval censored regressors
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Example 1: Linear Models with Interval Data I

Consider the model Y = X ′θ0 +ε when the outcome variable is
interval measured.

We do not observe Y directly but (Yl ,Yu) such that
P(Y ∈ [Yl ,Yu]) = 1.
We assume (for the sake of simplicity) uncorrelation between ε and
X .
We need to assume that Y is bounded.
Otherwise we have all the usual assumptions for linear regression.

Interval censoring is common in economic applications.
Income, wealth, wages, hours of work, taxes, etc. are often only
measured in brackets.

Often due to data confidentiality reasons.
Also increases response rate in surveys.

Object of interest is the parameter θ0.
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Example 1: Linear Models with Interval Data II

We start with the assumption that X is univariate. We can easily
characterize the identified set:

ΘI = {t ∈R such that there exists a r.v. λ∈ [0,1]E (X (Yl +λ(Yu−Y − l))) = E (X 2)t}

The identified set is a closed interval centered in E ( Yu+Yl
2 )/E (X 2).

ΘI = E (X Yu + Yl
2 )/E (X 2)±E (

∣∣∣∣X Yu−Yl
2

∣∣∣∣)/E (X 2).

More generally

ΘI = {t ∈R such that t = E (XX ′)−1E (X (Yl +λ(Yu−Y − l))) for some r.v. in [0,1]}
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Example 2: 2x2 Entry model I

Two firms, A and B, contest a set of markets.
In market m, where m = 1, . . . ,M, the profits for firms A and B are

πAm = αA + δAdBm +εAm

πBm = αB + δBdAm +εBm,

where dFm = 1 if firm F is present in market m, for F ∈ {A,B}, and
zero otherwise.
A more realistic model would also include observed market and firm
characteristics.
Firms enter market m if their profits in that market are positive.
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Example 2: 2x2 Entry model II

Firms observe all components of profits, including those that are
unobserved to the econometrician, (εAm,εBm), and so their decisions
satisfy:

dAm = I{πAm ≥ 0}
dBm = I{πBm ≥ 0}.

The unobserved components of profits, εFm, are independent across
markets and firms.
The econometrician observes in each market only the pair of
indicators dA and dB .

For simplicity, we assume that δA and δB are negative, and that
(εAm,εBm) has a distribution FΩ that is known up to
finite-dimensional parameter Ω.
Our aim is to learn the vector of parameters θ = (αA,αB , δA, δB ,Ω).
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Example 2: 2x2 Entry model III

With distributional assumptions on (εAm,εBm), it seems we could
obtain parameters of interest by maximizing the likelihood function
of the problem.
That is, we could try to choose parameter θ such that we match the
observed four choice probabilities pij = P(dA = i ,db = j) as good as
possible.
But this is not the case: for pairs of (εAm,εBm) such that

−αA ≤ εAm ≤−αA− δA

−αB ≤ εBm ≤−αB− δB

both (dA,dB) = (0,1) and (dA,dB) = (1,0) satisfy the profit
maximization condition.
Multiple equilibria are possible in this region.
In the terminology of this literature, the model is not complete.
(DRAW PICTURE)
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Example 2: 2x2 Entry model IV

Consequence: the probability of the outcome (dA,dB) = (0,1)
cannot be written as a function of the parameters of the model,
θ = (αA,αB , δA, δB ,Ω), even given distributional assumptions on
(εAm,εBm).
This would require an equilibrium selection rule.
Instead the model implies a lower and upper bound on this
probability:

H(0,1)
L (θ)≤ Pr((dA,dB) = (0,1))≤ H(0,1)

U (θ)

where

H(0,1)
L (θ) = Pr(εAm <−αA,−αB < εBm)

+ Pr(−αA < εAm <−αA− δA,−αB− δB < εBm)

and

H(0,1)
U (θ) = Pr(εAm <−αA− δA,−αB < εBm).
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Example 2: 2x2 Entry model V

Similar bounds can then be obtained on the probability of the event
that (dA,dB) = (1,0).
The probability that (dA,dB) = (1,1) and (dA,dB) = (0,0) can be
exactly determined.

The identified set is thus given by:

ΘI = {θ : H(0,1)
L (θ)≤ Pr((dA,dB) = (0,1))≤ H(0,1)

U (θ),

H(1,0)
L (θ)≤ Pr((dA,dB) = (1,0))≤ H(1,0)

U (θ),

Pr((dA,dB) = (0,0)) = H(0,0)(θ),

Pr((dA,dB) = (1,1)) = H(1,1)(θ)}

In general, this set does not have a more simple characterization.
Beresteanu et al. (2011) and Galichon and Henry (2011) discuss
alternative characterizations based on the theory of random sets.
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Example 2: 2x2 Entry model VI

Tamer (2003) shows that if profits are of the form

πFm = αF + X ′FmβF + δF dFm +εFm, F ∈ {A,B},

where XF are observable firm characteristics, one can achieve point
identification under a large support condition on one of the
characteristics (“identification at infinity”).
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General comments I

Partial identification creates new and interesting issues for
estimation and inference.

How do we estimate a set?
What is a “good” estimate of a set?
How do we construct a confidence region for a set?
Can we test an hypothesis about the true parameter under partial
identification?

For more complicated models where the identified set is difficult to
describe explicitly, such questions are still the object of current
research.
We also discuss the difference between covering a set or any point of
the set
Uniformity of the approach with respect to the (true but unknown)
size of the set.
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General comments II

One can try to obtain an estimate Θ̂I of the identified set ΘI .
Depending on the shape of the identified set, one can use different
approaches to obtain such an estimate (we talk about this soon).
Question: Which theoretical properties should such an estimator Θ̂I
have, independently of the method used to construct it?
This issue needs clarification, as most standard notions from point
estimation have no immediate counterpart for set estimation.
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General comments III

At a minimum, such an estimator should be consistent.
What does this mean?
As the sample size increases, Θ̂I should get closer to ΘI :

d(Θ̂I ,ΘI)
p→ 0

for some distance measure d(·, ·) that works for sets.
The literature on partial identification has most commonly used the
Hausdorff distance:

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a−b‖, inf

a∈A
sup
b∈B
‖a−b‖}.

Other distance measures are possible in principle, but are rarely
considered.
Other common properties of point estimators, like asymptotic
normality or efficiency are difficult to transfer to set estimation.
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Estimation: Interval Identified Parameters I

Estimation is straightforward if the true parameter θ0 is scalar and
the identified set takes the form of an interval, i.e.

ΘI = [θl ,θu].

In this case, we can estimate ΘI by

Θ̂I = [θ̂l , θ̂u],

where θ̂l , θ̂u are suitable estimates of the upper and lower boundary
of the interval.
It is straightforward to show that if (θ̂l , θ̂u)

p→ (θl ,θu) the set
estimator Θ̂I is consistent in the Hausdorff norm.
Proof: dH(Θ̂I ,ΘI) = max{‖θ̂l −θl‖,‖θ̂u−θu‖}

p→ 0
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Estimation: Interval Identified Parameters II

Example (Interval censoring with one explanatory variable):
Observe (Yui ,Yli ,Xi ), where Yi ∈ [Yli ,Yui ] is the outcome of interest.
Recall that the identified set is

ΘI =
E ( X(Yu+Yl )

2 )

E (X 2)
±

E (
∣∣∣X Yu−Yl

2

∣∣∣)
E (X 2)

.

Estimation by sample analogues: put

θ̂c =
1
n
∑n

i=1 Xi (Yui + Yli )

2 1
n
∑n

i=1 X 2
i

and ĥl =
1
n
∑n

i=1 |Xi |(Yui −Yli )

2 1
n
∑n

i=1 X 2
i

and set

θ̂l = θ̂c − ĥl and θ̂u = θ̂c + ĥl .

Consistency follows from Law of Large Numbers and Continuous
Mapping Theorem.
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Confidence region in a point identified model

In a point identified model, a confidence region of nominal size
asymptotically equal to 1−α can be derived from a test statistic ξ whose
aims is to test:

H0 : θ = θ0 against Ha : θ 6= θ0.

Following Lehmann (1986, Chapter 3), the confidence region CIn
1−α is

the collection of parameters θ ∈ Rd for which the null hypothesis is not
rejected i.e..

lim
n→+∞

Pr
(
θ0 ∈ CIn

1−α
)

= 1−α.
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Inference: A Simple Example I

Consider a stylized setting where θ0 is scalar and interval-identified:

ΘI = [θl ,θu].

The upper and lower bound can be estimated by θ̂u and θ̂l , resp.,
which satisfy:

√
n((θ̂u, θ̂l )− (θu,θl ))

d→ N(0,Σ)

where Σ is a diagonal matrix with diag(Σ) = (σ2
u,σ

2
l ).

We thus have asymptotically normal and independent estimated of
the upper and lower boundaries of the identified set.
Let q(α) denote the α quantile of the standard normal distribution.
By analogy to point identified case, we consider confidence sets of
the form

CSn(a) = [θ̂l −q(a)σ̂/
√

n, θ̂u + q(a)σ̂/
√

n] (5)

for some a > 1/2.
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Inference: A Simple Example II

Choice of a depends in desired properties of confidence set.
Choose a =

√
(1−α) for CSn(a) to be (1−α) confidence set for ΘI .

Proof: Just calculate the probability:

Pr(ΘI ∈ CSn(a)) = Pr(θl ≥ θ̂l −q(a)σ̂l/
√

n and θu ≤ θ̂u + q(a)σ̂u/
√

n)→ a2

Getting a confidence interval for θ0 is slightly more complicated.
Suppose θl < θ0 < θu. Then Pr(θ0 ∈ CSn(a))→ 1 for all values
a > 1/2.
Suppose θl = θ0. Then Pr(θ0 ∈ CSn(a))→ a.
Suppose θu = θ0. Then Pr(θ0 ∈ CSn(a))→ a.

We thus have that

liminf
n→∞

inf
θ0∈ΘI

Pr(θ0 ∈ CSn(1−α))≥ 1−α.
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Inference: A Simple Example III

CSn(1−α) looks like a “good” (1−α) confidence set for θ0.
Problem: Suppose that θl = θu, and that θ̂l = θ̂u in this case.

This is valid, because point identification is just a special case of
partial identification.

Then we find that

Pr(θ0 ∈ CSn(1−α)) = Pr(|
√

n(θ̂−θ0)/σ̂| ≤ q(1−α))→ 1−2α

The confidence interval is too liberal in this case.
A similar argument applies when θl and θu are not equal, but close
together.
The confidence set would be shorter than under point identification
in this case.
Reason: CSn(1−α) is not a valid (1−α) confidence set for θ0
uniformly over the length p = θu−θl of the identified set:

liminf
n→∞

inf
p

inf
θ0∈ΘI

Pr(θ0 ∈ CSn(1−α))≥ 1−2α.

C. Bontemps Introduction to Partial Identification



Introduction
First insights

Inference in model with partial identification
The criterion approach

The convex approach
Conclusion

General comments
Inference in an interval identified model

Inference: A Simple Example IV

CSn(1−α/2) would be a valid (1−α) confidence set for θ0
uniformly over p.
But this would be very conservative when p is large.
Imbens and Manski (2004) suggest to adjust the critical value based
on an estimate p̂ = θ̂u− θ̂l of the length of the identified set.
Define CS IM

n = [θ̂l −Cnσ̂/
√

n, θ̂u + Cnσ̂/
√

n]
Here the critical value Cn satisfies

Φ

(
Cn +

√
n p̂
σ̂

)
−Φ(−Cn) = 1−α.

and Cn = q(1−α/2) if p̂ = 0.
One can show that CS IM

n has asymptotic coverage rate of 1−α,
uniformly over p.
Note that Cn ∈ (q(1−α),q(1−α/2)) for every value of p̂.
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The two branches of the literature
CHT
Moment Inequality Models

Interval censoring case

ΘI = {t ∈R such that t =E(XX ′)−1E(X (Yl +λ(Yu−Y − l))) for some r.v. in [0,1]}
Several approaches are possible.
Approach 1: Criterion approach like the Modified Minimum
Distance (Manski and Tamer, 2002).
Monotonicity of the problem implies that
ΘI = {θ ∈ Rk : EX (Yl + Yu)/2−E|Xj |(Yu−Yl )/2≤ (E(XX ′)θ)j ≤ EX (Yl + Yu)/2 +E|Xj |(Yu−Yl )/2}.
Can write ΘI as the argmin of an objective function:

ΘI = argmin
θ

∑
j

(Uj − (E(XX ′)θ)j)
2
−+ ((E(XX ′)θ)j −Lj)

2
−))

with (a)+ = aI{a ≥ 0} and (a)− = aI{a ≤ 0}.
Approach 2: Support functions (e.g. Bontemps et al., 2011). See
also Beresteanu and Molinari (2008).
One can show that the set ΘI is bounded and convex.
It can thus equivalently be described through its support function:

δ∗(q,ΘI) = sup
θ∈ΘI

q′θ.

Bontemps et al. show that support function can be identified from
observables alone:

Write Σ = E(XX ′)−1 and Xq = q′ΣX and
Wq = Yl + I{Xq ≥ 0}(Yu−Yl ).
Then the support function is identified:

δ∗(q,ΘI ) = E(XqWq)

Moreover, any point θq = ΣE(XWq) is a frontier point of ΘI .
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Estimation: Criterion Function Approach I

When the shape of the identified set is more complicated, other
techniques have to be used.
Chernozhukov, Hong and Tamer (2007, Ecma) generalize the
concept of extremum estimators to settings with partial
identification.
They study the case where

ΘI = argmin
θ∈Θ

Q(θ)

and there exists a well-defined sample objective function Qn(·) such
that

sup
θ
‖Qn(θ)−Q(θ)‖ p→ 0.
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Estimation: Criterion Function Approach II

Assume without loss of generality that Q(θ)≥ 0 for all θ, and that
Q(θ) = 0 if θ ∈ΘI .
Examples include Modified Minimum Distance approach of Manski
and Tamer (2002), and more generally Moment Inequality Models.
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Estimation: Criterion Function Approach III

Remark (Moment Inequality Models): Suppose the identified set
is the set of all solutions to a finite number of moment inequalities

E(m(Z ,θ))≥ 0,

where ψ is an M-dimensional vector of known functions, and
θ0 ∈ RK .
The identified set is thus given by

ΘI = {θ ∈ RK : E(m(Z ,θ))≥ 0}.

Consider the population objective function

Q(θ) = E(m(Z ,θ))′−WE(m(Z ,θ))−,

where (x)− is component-wise non-positive part of x , and and W is
a non-negative definite weight matrix.
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Estimation: Criterion Function Approach IV

Then the identified set is the set of all values of θ such that
Q(θ) = 0.
A sample counterpart of this objective function would be

Qn(θ) =

(
1
n

n∑
i=1

m(Zi ,θ)

)′
−

W
(

1
n

n∑
i=1

m(Zi ,θ)

)
−
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Estimation: Criterion Function Approach V

First idea would be to estimate the identified set by

Θ̃I = {θ : Qn(θ) = 0}.

This does typically not work in applications!
Reason: In finite samples, Qn will often be positive with high
probability even for values of θ within the identified set.
Intuition: Consider the standard GMM case with equalities and
overidentification.

Even if E(ψ(Z ,θ0)) = 0 the sample objective function will not be
zero in finite samples in the case with over-identification.

Another Intuition: Suppose that by construction Qn(θ)≥ 0 for all
θ. If Qn is not degenerate over the identified set we have that
Pr(Qn(θ)> 0)> 0 for θ ∈ΘI .
As a result, Θ̃I can e.g. be empty when ΘI is not, even in large
samples.
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Estimation: Criterion Function Approach VI

A feasible approach: Estimate ΘI by the level set

Θ̂I = {θ : Qn(θ)≤ cn},

where cn→ 0 at an appropriate rate.
In most regular problems choosing cn = c log(n)/n for some constant
c is appropriate, and leads to an estimator of Θ̂I that is consistent in
the Hausdorff norm.
In particular, one can show that

dH(Θ̂I ,ΘI) = Op
(√

log(n)/n
)

under some technical conditions on Qn.
This is close to the

√
n rate we typically get for parametric

estimation problems under point identification.
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Inference: General Principles I

The role of inferential procedures is to quantify our uncertainty
about our estimates due to using a finite data set.
Inference in partially identified models is still an active area of
research.
There are many subtle issues that do not appear under point
identification.
We will start with a simple example to illustrate the problems.
After that, we turn to are more general framework for inference.
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Inference: General Principles II

Suppose we want to compute a confidence set CSn with level 1−α.
Problem: What should the confidence set cover (asymptotically)?
The entire identified set ΘI?

liminf
n→∞

Pr(ΘI ∈ CSn)≥ 1−α.

Or the true parameter value θ0?

liminf
n→∞

Pr(θ0 ∈ CSn)≥ 1−α.

Both approaches have been discussed in the literature, and both
have their place in certain applications.
The second notion is more in line with the traditional view of a
confidence interval under point identification
It is not clear why this intuition should be changed in partially
identified models.
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Inference: General Principles III

Another problem under partial identification is the uniform validity
of confidence sets.
We might have that

liminf
n→∞

Pr(θ0 ∈ CSn)≥ 1−α.

for one particular DGP.
Still, for fixed n the probability Pr(θ0 ∈ CSn) might depend a lot on
the true DGP.
It is thus useful to have confidence sets that satisfy

liminf
n→∞

inf
valid DPGs

Pr(θ0 ∈ CSn)≥ 1−α.

We will illustrate the last point in an example.
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Inference: Moment Inequality Models I

We now turn to inference on θ0 in a general setting.
We consider models that lead to a system of (unconditional)
moment inequalities.
Most of our examples can be cast in this framework.
Parameter of interest is typically vector valued, and the identified set
can have an arbitrary complicated form.
Most of our discussion is based on work of Don Andrews with
various co-authors.
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Inference: Moment Inequality Models II

Model: The true value θ0 satisfies

E(mj(Z ,θ))≥ 0 for j = 1, . . . ,p
E(mj(Z ,θ)) = 0 for j = p + 1, . . . ,p + v

Here m(·,θ) = (mj(·,θ), j = 1, . . . ,k) are known real-valued moment
functions.
θ0 may or may not be identified by the moment conditions.
Aim: Construct confidence sets for θ0.
Can be obtained by inverting a test Tn(θ) for testing H0 : θ = θ0:

CSn = {θ ∈Θ : Tn(θ)≤ c(1−α,θ)}

Questions: Which test statistic? Which critical value?
We will discuss two types of test statistic and three types of critical
values.
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Inference: Moment Inequality Models III

General setup: consider the sample moment functions

m̄n(θ) = (m̄n,1(θ), . . . ,m̄n,k(θ))′

m̄n,j(θ) =
1
n

n∑
i=1

mj(Zi ,θ) for j = 1, . . . ,k

Let Σ̂(θ) be an estimator of the asymptotic variance, Σ(θ), of
n1/2m̄n(θ).
For i.i.d. data we can take

Σ̂(θ) =
1
n

n∑
i=1

(m(Zi ,θ)− m̄n(θ))(m(Zi ,θ)− m̄n(θ))′.
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Inference: Moment Inequality Models IV

For some S real function on Rp
[+∞]×Rv ×Vk×k the statistic Tn(θ)

is of the form

Tn(θ) = S(n1/2m̄n(θ), Σ̂(θ)).

Rp
[+∞] is space of p-vectors whose elements are either real or +∞.
Vk×k is the space of k×k matrices.
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Inference: Moment Inequality Models V

Testing Functions
Example 1: Modified Method of Moments (MMM). S = S1 with

S1(m,Σ) =

p∑
j=1

(mj/σj)
2
−+

p+v∑
j=p+1

(mj/σj)
2

where σj is jth diagonal element of Σ.
The function S1 yields a test statistic that gives positive weight to
moment inequalities only when they are violated.
This test is e.g. considered in Chernozhukov et al. (2007).
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Inference: Moment Inequality Models VI

Testing Functions
Example 2: Gaussian quasi-likelihood ratio (or minimum distance).
S = S2 with

S2(m,Σ) = inf
t=(t1,0v ),t1∈R

p
+,[+∞]

(m− t)′Σ−1(m− t)

The reason we minimize over t1 ∈ Rp
+,[+∞] (and not just Rp

+) is
because for the asymptotic analysis we have to allow for mj =∞.
This test is e.g. considered in Rosen (2008).
Of course, other testing functions can also be considered.
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Inference: Moment Inequality Models VII

Critical Values
Different testing functions can be combined with different
approaches to construct critical values.
General idea: Under mild conditions, we have that

Tn(θ)
d→ S(Ω1/2Z + h1,Ω)

Z ∼ N(0k , Ik ) is a standard normal vector.
Ω = Ω(θ) is the correlation matrix of m(Z ,θ).
h1 is a k-vector with h1,j = 0 for j > p and h1,j ∈ [0,∞] for j ≤ p.

Ideally, ideally one would use the 1−α quantile of S(Ω1/2Z + h1,Ω),
denoted by ch1(1−α,θ) or, at least, a consistent estimator of it.
This requires knowledge of h1, which cannot be estimated
consistently.
Different critical values are thus based on different approximations of
ch1(1−α,θ).
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Inference: Moment Inequality Models VIII

Approach 1: Plug-in Asymptotics (PA).
Can show that distribution of S(Ω1/2Z + h1,Ω) is stochastically
largest when all moment inequalities are binding (i.e. hold as
equalities).
The “worst case” is thus that h1 = 0k , and the least favorable
critical value is given by the 1−α quantile of S(Ω1/2Z ,Ω), denoted
by c0(1−α,θ).
PA critical values are defined as consistent estimators of c0(1−α,θ).
With D̂n(θ) = diag(Σ̂n(θ)) define Ω̂n(θ) = D̂−1/2

n (θ)Σ̂n(θ)D̂−1/2
n .

Then PA critical value is

cPA(1−α, Ω̂n(θ)) = inf{x ∈ R : Pr(S(Ω̂n(θ)1/2Z , Ω̂n(θ))≤ x)≥ 1−α}

for some random vector Z ∼ N(0k , Ik) independent of the data.
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Inference: Moment Inequality Models IX

Discussion of PA approach
PA critical values are easy to implement, since they are very easy to
compute.
PA confidence sets are asymptotically valid in a uniform sense.

liminf
n→∞

inf
valid DGPs

Pr(θ0 ∈ CSPA
n )≥ 1−α

PA critical values are conservative, since they are based on the least
favorable case.

Coverage probability of resulting confidence sets is typically larger
than 1−α.
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Inference: Moment Inequality Models X

Approach 2: Generalized Moment Selection (GMS); from Andrews
and Soares (2010).
Idea is to figure out which moment inequalities are binding from the
data.
For some κn→∞ at a suitable rate (e.g. κn = (2 log(log(n)))1/2)
define

ξn(θ) = κ−1
n D̂−1/2

n (θ)n1/2m̄n(θ).

ξn(θ) is vector of normalized sample moments.
If ξn,j(θ) is “large and positive” then jth inequality “seems” not to
be binding.
If ξn,j(θ) is “close to zero or negative” then jth inequality “seems”
to be binding.
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Inference: Moment Inequality Models XI

GMS replaces h1 in limiting distribution by ϕ(ξn(θ), Ω̂n(θ)).
Function ϕ= (ϕ1, . . . ,ϕp ,0v ) can be chosen by the researcher.
Some common examples include:

ϕ
(1)
j (ξ,Ω) =∞I{ξj > 1} (with 0∞= 0)

ϕ
(2)
j (ξ,Ω) = (ξj)+

ϕ
(3)
j (ξ,Ω) = ξj

GMS critical value is

cGMS(1−α, Ω̂n(θ),κn)

= inf{x ∈ R : Pr(S(Ω̂n(θ)1/2Z +ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ))≤ x)≥ 1−α}

for some random vector Z ∼ N(0k , Ik) independent of the data.
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Inference: Moment Inequality Models XII

Discussion of GMS approach
GMS critical values are easy to implement, since they are very easy
to compute.
GMS confidence sets are asymptotically valid in a uniform sense.

liminf
n→∞

inf
valid DGPs

Pr(θ0 ∈ CSGMS
n )≥ 1−α.

GMS confidence sets are not asymptotically conservative under
certain technical conditions:

liminf
n→∞

inf
valid DGPs

Pr(θ0 ∈ CSGMS
n ) = 1−α.

Confidence sets have smaller volume than those based on PA.
Confidence set depends on (arbitrary) choice of function ϕ.
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Inference: Moment Inequality Models XIII

Approach 3: Subsampling, (Politis and Romano, 1994).
Subsampling tries to approximate the distribution of Tn(θ) directly.
Idea: Suppose we could restart the data generating process as often
as we wanted, and generated arbitrary many data sets
{Zi , i = 1, . . . ,n}.
We could compute Tn(θ) for each new data set, and thus determine
its distribution exactly.
Subsampling tries to mimic this infeasible approach:

Draw small subsamples of size b� n from the full data set (without
replacement).
Compute test statistic for each subsample.
Use empirical distribution of subsample test statistics as an
approximation to the distribution of Tn(θ).

Computationally intensive, but works in theory under very weak
conditions.
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Inference: Moment Inequality Models XIV

Let bn denote subsample size, which satisfies bn→∞ and bn/n→
as n→∞.
There are qn = n!/((n−bn)!bn!) subsamples of size bn.
Let Tn,b,s(θ) be the test statistic on the sth subsample of size bn.
The empirical CDF of Tn,b,s(θ) is given by

Un,b(x ,θ) =
1

qn

qn∑
s=1

I{Tn,b,s(θ)≤ x}.

SS critical value is

cSS(1−α,θ,b) = inf{x ∈ R : Un,b(x ,θ)≥ 1−α}
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Inference: Moment Inequality Models XV

Discussion of SS approach
SS critical values require extensive computations.
SS confidence sets are asymptotically valid in a uniform sense.

liminf
n→∞

inf
valid DGPs

Pr(θ0 ∈ CSSS
n )≥ 1−α.

SS confidence sets are not asymptotically conservative under certain
technical conditions:

liminf
n→∞

inf
valid DGPs

Pr(θ0 ∈ CSSS
n ) = 1−α.

SS test has less power than GMS test against certain local
alternatives (and hence leads to asymptotically larger confidence
sets).
SS approximation can be unreliable in small or mid-size data sets.
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Inference: Moment Inequality Models XVI

There is a large literature on the advantages and disadvantages of
different approaches to compute test statistics and critical values.
Andrews and Jia (2011) recommend using a slightly modified version
of the QLR statistic together with a particular GMS critical value.
Bugni et al. (2011) study the properties of the confidence sets under
local misspecification, finding that

MMM test is more robust than QLR test,
PA critical values are more robust than GMS and SS critical values,
GMS and SS critical values are equally robust.

There thus seems to be a tradeoff between efficiency and robustness.
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Using the geometric structure to simplify the inference

The main references are Beresteanu and Molinari (2008),
Beresteanu, Molochanov and Molinari (2011), Bontemps, Magnac
and Maurin (2012), Kaido and Santos (2013).
When the set is convex, one can use the tools of the convex set
theory (see Rockafellar, 1970) to propose simple estimators and
testing strategies.
Kaido and Santos (2013) estimate an efficiency bound and prove
that the natural estimator of the support function is efficient
It is also very simple to propose inference for subset of the vector of
parameters.
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No Moment Condition in Surplus

E (zT (xθ− yc)) = E (zT u(z)),u(z) ∈ ±E (yu− yl |z)/2}.

The identified set

ΘI = {θ : θ= (E (zT x))−1E (zT (y +u(z))),u(z)∈ [−E (yu−yl |z)/2,E (yu−yl |z)/2]},

is

Non empty : θ∗ corresponding to u(z) = 0 belongs to B.
Bounded : u(z) is uniformly bounded by bounds which are integrable
(L2).
Convex : Moment conditions are linear and the interval containing
u(z) is convex.
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Support Function

The dual to the indicator function of a convex set is called its support
function, i.e.

δ∗(q | B) = sup
θ∈B

(qT θ) for all directions, q such that ‖ q ‖= 1.

A convex set can be fully described by its support function, (Rockafellar,
1970)

θ ∈ B⇔∀q,‖ q ‖= 1,qT θ ≤ δ∗(q | B).

The support function of a convex and bounded set is bounded and
differentiable. Its derivative is continuous except at a countable number
of points.
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The support function

B

q

βq

q�βq
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Hormander’s embedding theorem

The Hausdorff distance between two sets A and B:

dH(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(a,B)

)
,

where d(w ,U) = infu∈U d(w ,u).
Isometry between the Hausdorff distance and the support function:

dH(A,B) = sup
q∈S
|δ∗(q|A)− δ∗(q|B)|,

where S is the unit sphere

S = {q : ‖ q ‖= 1}
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Inference: The criterion view

Chernozhukov, Hong and Tamer (2007)
The identified set B is defined by a criterion:

Q(θ) = 0⇐⇒ θ ∈ B

A natural choice here is:

Q(θ) =

∫
S
(δ∗(q | B)−qT θ)21{δ∗(q|B)< qT θ}dµ(q)

where µ(q) is a strictly positive measure on the unit sphere S⊂ Rp .
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The Identified Set: Projection in a Single Dimension

ΘI = {θ : θ= (E (zT x))−1E (zT (yc +u(z))),u(z)∈−E (yu−yl |z)/2,E (yu−yl |z)/2]},

Consider a direction q. We project the incomplete linear moment
conditions

E (zT (xθ− yc)) = E (zT u(z))

onto direction q:

qT θ = qT E (zT x)−1E
(

zT (yc + u(z))
)

= E (zq(yc + u(z)))

where
zq = qT E (zT x)−1zT .
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The Identified Set: Characterization

The support function δ∗(q | θI) = supθ∈ΘI (qT θ) is the solution to a
single-dimensional problem:

sup
u(z)∈[∆(z),∆(z)]

E (zq(y + u(z)))

obtained using: uq(z) = ∆(z) +
(
∆(z)−∆(z)

)
1{zq > 0}.

Result: The identified set ΘI is defined by its support function

δ∗(q |ΘI) = E (zq(y + uq(z))) = E (zqwq)

where wq is an easy-to-construct variable:

wq = y + (y − y)1{zq > 0}.

Remark:
θq = E (zT x)−1E (zT wq)
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Smoothness of the set

If z has full support and his p.d.f. is strictly positive and continuous,
the set ΘI is smooth.
If z the support is a subset of R and the p.d.f is strictly continuous,
ΘI has kinks.
If z has mass points, ΘI has exposed faces.
If z is discrete ΘI has kinks and exposed faces.
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Asymptotic Properties I

δ∗(q |ΘI) = E (zqwq)

where:

zq = qT E (zT x)−1zT = qT ΣT zT ,

wq = y + 1{zq > 0}(y − y).

Define an estimate Σ̂n of Σ and define the empirical analogues:

zn,qi = qT Σ̂T
n zT

i ,

wn,qi = y i + 1{zn,qi > 0}(y i − y i ).

The estimate of the support function is defined as:

δ̂∗n (q |ΘI) =
1
n

n∑
i=1

zn,qi wn,qi .
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Asymptotic Properties II

If z has no mass point, the stochastic process

τn(q) =
√

n(δ̂∗n (q |ΘI)− δ∗(q |ΘI)),

defined on the unit sphere, tends uniformly in distribution when n tends
to ∞ to a Gaussian stochastic process,d(q), such that:

E (d(q)) = 0

and the covariance operator is:

Cov(d(q)d(r)) = E (zqzrεqεr )−E (zqεq)E (zrεr ).

εq = wq− xθq.
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Tests

Here, we test {θ0} ∈ΘI using the support function:

{θ0} ∈ΘI ⇐⇒∀q ∈ S, δ∗(q |ΘI)−qT θ0 ≥ 0

For a frontier point, {θ0} ∈ ∂ΘI , there exists at least one direction q0 for
which the previous expression binds with equality:

∃q0 ∈ S, δ∗(q0 |ΘI) = qT
0 θ0

If ΘI is strictly convex, q0 is unique.
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Test Procedure for θ0 ∈ΘI I

Based on the infimum of the following stochastic process on the unit
sphere S:

√
nT∞(q;θ0) =

√
n(δ∗(q |ΘI)−qT θ0)

If θ0 ∈ΘI and q0 is unique:
√

nT∞(q;θ0)> 0 for q 6= q0,√
nT∞(q0;θ0) = 0.

We replace now T∞(q;θ0) by its estimator Tn(q;θ0) and base our test
procedure on:

√
nTn(q;θ0) =

√
n(δ̂∗n (q |ΘI)−qT θ0)
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Test Procedure for θ0 ∈ΘI II

Search for a minimum qn of

Tn(q;θ0) = δ̂∗n (q |ΘI)−qT θ0 on the unit sphere S.

if q0 is unique, qn tends to q0,
√

nTn(qn;θ0)−
√

nTn(q0;θ0)→ 0.

√
nTn(q0;θ0) =

√
n(δ̂∗n (q0 |ΘI)−qT

0 θ0)

=
√

n(δ̂∗n (q0 |ΘI)− δ∗(q0 |ΘI)) +
√

n(δ∗(q0 |ΘI))−qT
0 θ0)

The first term converges to a Gaussian process with known variance
Vq0 ,
The second term is zero, positive or negative depending on the fact
that θ0 ∈ ∂ΘI , θ0 ∈ΘI , θ0 /∈ΘI .
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Summary

Search for a minimum qn of
Tn(q;θ0) = δ̂∗n (q |ΘI)−qT θ0 on the unit sphere S.

Compute the Studentized statistic of the minimum:

ξn(θ0) =
√

n Tn(qn;θ0)√
V̂n

=
√

n minq Tn(q;θ0)√
V̂n

.

with V̂n = Vqn = Cov(d(qn),d(qn)).
Then, if θ0 ∈ ∂ΘI ,

ξn(θ0) −→
n→∞

N (0,1),

if θ0 ∈ int(ΘI),
ξn(θ0) −→

n→∞
+∞

and if θ0 does not belong to ΘI ,
ξn(θ0) −→

n→∞
−∞.
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In many examples, point identification is ruled out because some
information is missing.
If one can bound this information, a set can be estimated.
Despite the huge number of theoretical contributions, a few
empirical applications only (see next course).
There is still theoretical and empirical work to do.
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