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Overview

Applied question
I What are the effects of biofuels policy?

Methodological issue
I How to estimate long-run elasticities of crop supply?

Contributions
I I develop a tractable and flexible empirical dynamic model of

land use
I Estimated with linear regression equation
I “Euler equation” approach

I Taking dynamics into account implies larger environmental
impacts, smaller price impacts from biofuels
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Motivation: biofuels policy

I US biofuels mandate: about 10% of gasoline must come from
biofuels (Renewable Fuels Standard)

I Appeal of biofuels: closing the carbon cycle
I But what is the opportunity cost of the feedstock?

I Biofuels mandate ⇒ a long-run increase in demand for grains
I 35-40% of US corn production used to for ethanol recently

The RFS Schedule

I Increased demand ⇒ higher food prices and/or
environmentally destructive land use change
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Effects of the US biofuels mandate
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Corn Prices
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Choice data preview

Roberts County, SD, 2007
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Choice data preview

Roberts County, SD, 2011
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Aggregate acreage

Within land I observe for the entire sample period:
I 32.3% in crops in 2006
I 34.2% in crops in 2012
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Intensive vs. extensive margins

I Focus is on the extensive margin of agricultural supply, i.e.
land use change.

I Intensive margin assumed to be small.

I Supporting evidence: working papers by Berry and Schlenker
(2011) and Scott (2013).
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Empirical work on land use and crop supply

I The most influential papers on biofuels have weak empirical
foundations (Searchinger et al., 2008; Tyner et al., 2010)

I Roberts and Schlenker (2013):
I rare example of study on biofuels based on explicit econometric

evidence
I relies on static anaysis, like most papers on land use change

I Two levels on which dynamic matter:
1. state dependence
2. dynamic optimization
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Dynamic discrete choice estimation

I Estimate model using linear regression
I relies on Hotz-Miller (1993) inversion
I most DDC estimation papers involve non-linear likelihood

functions or moment conditions

I “Euler equation” approach
I have to model field-level dynamics but not market dynamics
I discrete choice analog of Hall (1978)

other examples: Altug and Miller (1998), Murphy (2012)

I Unobservable heterogeneity using EM algorithm
I follows Arcidiacono and Miller (2011)
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Outline

1. Model and empirical approach
I Binary model of crop choice
I Regression equation construction
I Extension to unobservable heterogeneity

2. Data and implementation

3. Results
I Importance of dynamics and unobservable heterogeneity
I Implications for biofuels policy
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Model & Empirical Approach



Binary crop choice model

I A landowner’s choice set: J = {crops, other}.

I If field i is in state k at time t, then the expected profits to
land use j are:

π (j , k, νit) = α0,j,k + αRRj (ωt) + ξjk (ωt) + νijt

i : field
j : land use
k: field state
ω: market state (information set for farmers)
R: expected returns, observable to econometrician
ξ: unobservable shock to returns
ν: idiosyncratic field-level shock
α: parameters to be estimated
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Assumptions

Assumption 1 (small fields, no externalities)
The distribution of the market state ωt+1 conditional on ωt is not
affected by changing the land use in any single field.

Assumption 2 (logit errors)
The idiosyncratic error term νijt has a type 1 extreme value
distribution, independently and identically distributed across i , j ,
and t.
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Dynamics I

I Landowners maximize expected discounted profits.

I Field states evolve according to a simple deterministic process:

ki ,t+1 = κ (jit , kit) =

0 if jit = crops
min

{
kit + 1, k̄

}
if jit = other

I No explicit assumptions on the evolution of R and ξ

I Important: estimating the process governing the evolution of
the unobservable supply shock ξ is especially difficult
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Dynamics II

I β: common discount factor
I Value function:

Vt (kit , νit) ≡
maxj E

[∑∞
s≥t β

s−tπ (j (ωs , kis , νis) , kis , ωs , νis) |kit , ωt , νit
]

where j represents a policy function.

Assumption 3
Landowners have rational expectations.
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Dynamics III
I ex ante value function:

V̄t (k) ≡
ˆ

Vt (k, ν) dF (ν) ,

the value function integrated over idiosyncratic shocks ν

I conditional value function:

δt (j , k) ≡ π̄t (j , k) + βEt
[
V̄t+1 (κ (j , k))

]
where π̄ indicates ex ante profits: π̄t (j , k) = πt (j , k, 0)

I Conditional choice probabilities (with logit assumption):

pjkt =
exp (δt (j , k))∑
j′ exp (δt (j ′, k))
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Regression equation construction

Steps:
1. Start with condition for indifferent agent

2. Introduce expectational error (“Euler equation” error term)

3. Forward calculation of continuation values using conditional
choice probabilities

4. Rearrange into regression equation
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Step 1: Indifferent agent condition (Hotz-Miller inversion)

I The Hotz-Miller inversion with logit errors:

ln
(

pjkt
pj′kt

)
= δt (j , k)− δt

(
j ′, k

)

I Rewrite as relationship between current profits and
continuation values:

π̄t (j , k)− π̄t (j ′, k) + ln
( pjkt

pj′kt

)
=

β
(
Et
[
V̄t+1 (κ (j , k))

]
− Et

[
V̄t+1 (κ (j ′, k))

])
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Step 2: Expectational errors
I Expectational error:

εCV
t (j , k) ≡ β

(
Et
[
V̄t+1 (κ (j , k))

]
− V̄t+1 (κ (j , k))

)

I The condition can be rewritten:

π̄t (j , k)− π̄t (j ′, k) + ln
( pjkt

pj′kt

)
=

β
(
V̄t+1 (κ (j , k))− V̄t+1 (κ (j ′, k))

)
+εCV

t (j , k)− εCV
t (j ′, k)

I The expectational error terms are mean uncorrelated with any
variables in the information set ωt .
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Step 3: Forward calculation
I Replace the continuation values using the following formula:

V̄t (k) = − ln (pj∗,k,t) + δt (j∗, k) + γ

which holds for any land use j∗. This is a special case of
Arcidiacono and Miller’s (2011) Lemma 1. derivation

I Recall κ (crops, k) = 0 for all k (renewal action)

I By choosing j∗ = crops, continuation values from t + 2
onward will cancel:

V̄t+1 (κ (j , k)) = − ln
(
pj∗,κ(j,k),t+1

)
+ π̄t+1 (j∗, κ (j , k)) + βV̄t+2 (0)

V̄t+1 (κ (j ′, k)) = − ln
(
pj∗,κ(j′,k),t+1

)
+ π̄t+1 (j∗, κ (j ′, k)) + βV̄t+2 (0)
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Step 4: rearrange into regression equation

Yk,t = ∆̃α0 (k) + αR∆Rt + ∆̃ξkt + ∆εCV
t

where

Yk,t = ln
(

pcrops,k,t
pother,k,t

)
+ β ln

(
pcrops,0,t+1

pcrops,κ(other,k),t+1

)
∆̃α0 (k) = α0,crops,k − α0,other ,k

+β
(
α0,crops,0 − α0,crops,κ(other ,k)

)
∆Rt = Rcrops,t − Rother ,t

∆̃ξt = ξcrops,k,t − ξother ,k,t + β
(
ξcrops,0,t+1 + ξcrops,κ(other ,k),t+1

)
∆εt = εCV

t (crops, k)− εCV
t (other , k)

Generalizes to multinomial setting and (almost) any distribution for ν.
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Heterogeneity

I zi : observable persistent field-level characteristic (counties)

I ζi : Persistent, unobservable field-level characteristic (binary)
I estimation idea: EM algorithm (Arcidiacono and Miller, 2011)
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Estimation without unobservable heterogeneity

1. Estimate conditional choice probabilities for each
unobservable type using EM algorithm

2. Construct dependent variable from CCP estimates

3. Linear regression to estimate ∆̃αz,ζ,0 (k) and αR

4. Recover αz,ζ,0 (j , k) from ∆̃αz,ζ,0 (k)
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Estimation with unobservable heterogeneity

1. Estimate conditional choice probabilities for each
unobservable type using EM algorithm

2. Construct dependent variable from CCP estimates

3. Linear regression to estimate ∆̃αz,ζ,0 (k) and αR

4. Recover αz,ζ,0 (j , k) from ∆̃αz,ζ,0 (k)
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Identification of unobservable heterogeneity
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Includes all land in the Heartland ERS region excluding water, protected land, and developed land.
Source: author’s calculations based on Cropland Data Layer.

Crop Persistence in the Heartland, 2008−2011

Formal identification papers: Hall and Zhou (2003), Kasahara and
Shimotsu (2009) EM details
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Data & Measurement



Data & measurement overview

I Field-level panel where field ≡ spatial point

I “Crops”: all crop classifications except hay

I “Other”: pasture, hay, grassland, forests, other forms of
non-managed land

I Developed land, protected areas, and water excluded from the
sample Classification table

31 / 43



Crop Returns

I Returns to cropland is a weighted average across crops:

Rcrops,t,z =

∑
c∈C ActsRctz∑

c∈C Acts

where Acts is the harvested area for US state s.

I C ={corn, soybeans, winter wheat, durum wheat, other
wheat, barley, oats, rice, upland cotton, pima cotton}

I Expected returns Rc,t,z measure the expected returns during
planting season:

Rctz = (Pctz − ectz) · YIELDctz
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Expected yields

I Yields based on weather data, county fixed effects, and a
linear time trend:

ln (YIELDctz) = θcz + θcw Wtz + θctt + εctz

I For county-crops with insufficient data, I impute fixed effects
based on a weighted average of fixed effects for nearby
counties.

I Weather data and specification from Schlenker and Roberts
(PNAS, 2009).
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Yield forecasts
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Identification: fixed effects

Think of the data as a panel in n and t, where n indexes a county,
field type, and field state (n = (z , ζ, k))

Ynt = ∆̃α0n + αRζRnt + ∆̃ξnt + ∆εV
nt

The rational expectations assumption implies the moment

∀t : E
[
∆εV

ntRnt
]

= 0.

However, fixed effects estimation requires a stronger assumption:

∀t, t ′ : E
[
∆εV

ntRnt′
]

= 0,

which is not implied by the model and unlikely to be true.
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Identification: first differences

Yn,t+1 − Ynt = αRζ (Rn,t+1 − Rnt)

+∆̃ξn,t+1 − ∆̃ξn,t

+∆̃εV
n,t+1 − ∆̃εV

nt

I use the following moments for estimation:

E


 1

Rnt
CYIELDnt

(∆̃ξn,t+1 − ∆̃ξn,t
) = 0

where CYIELDnt is expected caloric yield.

36 / 43



Results



Long-run elasticities

I Long-run acreage-price elasticity:∑
z

∑
ζ

A∗zζ (Rzt)

−1∑
z

∑
ζ

(
A∗zζ (Rzt′)− A∗zζ (Rzt)

) Pzt
Pzt′ − Pzt


I A∗ (R): is the steady-state acreage implied by the dynamic

model with returns fixed at R
I Pzt : price index
I t = 2012, t ′ is a hypothetical period with 10% higher output

prices

I Long-run calorie-price elasticity defined similarly

38 / 43



Long-run elasticity estimates I

No Unobs. Heterogeneity Two Types Per County
Acreage Calorie Acreage Calorie

Static model (k̄ = 0) -0.0012 -0.0013 0.0600 0.0624
(0.0358) (0.0359) (0.0460) (0.0471)

Myopic models (β = 0)
k̄ = 1 0.0703 0.0693 0.0037 0.0054

(0.1427) (0.1416) (0.0380) (0.0388)

k̄ = 2 0.0171 0.0160 -0.0067 -0.0063
(0.1839) (0.1820) (0.0507) (0.0500)

Dynamic models (β = .9)
k̄ = 1 0.6669 0.6144 0.5449 0.5990

(0.5470) (0.5031) (0.1764) (0.1944)

k̄ = 2 0.4757 0.4519 0.4152 0.4425
(0.5151) (0.4932) (0.1610) (0.1724)

Full dynamic parameter estimates Posteriors vs. slope index Different measures of returns
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Long-run elasticity estimates II

Regression Approach
CCPs Weighted FE FD FDIV

smoothed no 0.2909 0.2840 0.2540
(0.0246) (0.0211) (0.0301)
(0.2376) (0.1976) (0.2506)

smoothed yes 0.4485 0.3803 0.4325
(0.0236) (0.0203) (0.0278)
(0.2021) (0.1632) (0.2068)

truncated no 0.3657 0.3674 0.3068
(0.0374) (0.0318) (0.0439)
(0.1972) (0.1650) (0.2253)

truncated yes 0.4136 0.3860 0.4152
(0.0242) (0.0211) (0.0302)
(0.1519) (0.1185) (0.1610)

Regression approaches are fixed effects, first differences, and first differences with
instruments. All models feature two unobservable types, two periods of state
dependence, and β = .9. Standard errors in parentheses standard errors with
autocorrelation in italics.
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Effects of the US biofuels mandate
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elasticity estimate predicts a 35% larger land use increase and 70%
smaller price increase in the long run.
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Are these elasticities unrealistically high? (No!)

Another simulation:
1. Initialize acreage levels to steady state distributions with

returns fixed at 2006 levels
2. Simulate deterministic process: historical returns are attained

for 2007-2011, and then prices are held constant at 6.8%
higher than 2006 levels forever after

3. Agents have perfect foresight

Simulation results: land in crops in 2012 is 6.1% higher than in
2006.

From 2006 to 2012, land in crops actually increased by 5.7%
(within states which have been in the Cropland Data Layer since 2006)
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Thank you!
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Step 3: Forward calculation
By integrating the conditionally independent logit errors, we can
derive simple expressions for conditional choice probabilities and the
ex ante value function:

pjkt = exp(δt (j,k))∑
j′ exp(δt (j′,k))

(1)

V̄t (k) = ln
(∑

j′ exp (δt (j ′, k))
)

+ γ. (2)

Adding and subtracting δt (j , k) in equation (1), and substituting
using equation (2):

V̄t (k) = − ln (pjkt) + δt (j , k) + γ,

where γ is Euler’s gamma. back
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Renewable fuel standards

Source: US Department of Energy

back
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Unobservable heterogeneity: formalities
I CCP’s contingent on unobservable characteristics:

pzζt (j , k)

I Prior probabilities of unobservable ζ, conditional on z and k:

µzζ (k) ≡ Pr (ζi = ζ| ki1, i ∈ Iz )

where Iz denotes the set of fields with observable type z .

I Define posterior probabilities:

qiζ ≡ Pr (ζi = ζ| ji , ki ) = µz(i)ζ (k)
T∏

t=1
pz(i)ζt (jit , kit)

I where z (i) is the observable type of field i .
back
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EM Algorithm

M step: p̂(freq,m)
zζt (j , k) =

∑
i∈Iz

q(m−1)

iζ 1[jit =j,kit =k]∑
i∈Iz

q(m−1)

iζ 1[kit =j]

p̂(m)
zζt (j , k) =

∑
z′∈Zs

wzz′ p̂
(freq,m)

z′ζt (crops,k)∑
z′∈Zs

wzz′

µ̂
(m)
zζ (k) =

∑
i∈Iz

q(m−1)

iζ 1[ki1=k]∑
i∈Iz

q(m−1)

iζ

E step: q(m)
iζ = µ̂

(m)
zζ (ki1)

∏T
t=1 p̂(m)

zζt (jit , kit)

I m denotes values at the mth iteration
I Zs : set of counties in US state s
I Iterate E and M steps until convergence

I no monotonicity (and not ML) because of smoothing
I method of moments estimator, EM algorithm finds solution

back
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Dynamic estimates: details
State dependence k̄ 1 1 2 2
Field types 1 2 1 2
Type High Low High Low

αR 0.1405 0.0359 0.3822 0.0553 -0.0041 0.2333
(0.0632) (0.0595) (0.0740) (0.0593) (0.0706) (0.0788)

Average intercepts (α0)
k = 0 -0.3268 1.1118 -2.6980 -0.0546 0.9259 -2.1024

(0.1677) (0.1579) (0.1962) (0.1632) (0.1944) (0.2170)

k = 1 -4.8413 -0.1744 -5.2899 -2.3996 -1.3241 -1.7699
(0.1677) (0.1579) (0.1962) (0.1632) (0.1944) (0.2170)

k = 2 – – – -5.7812 -1.7508 -5.0839
– – – (0.1632) (0.1944) (0.2170)

Type’s share of fields 1.0000 0.2702 0.7298 1.0000 0.2571 0.7429

Share in crops 0.2496 0.8624 0.0226 0.2516 0.8772 0.0350

Long run acreage- 1.1353 0.4232 0.4757 0.4152
price elasticity (0.4714) (0.1160) (0.5151) (0.1610)

Long run calorie- 1.0379 0.4525 0.4519 0.4425
price elasticity (0.4261) (0.1270) (0.4932) (0.1724)

Counties 1978 1978 1978 1978
County-years 8281 8281 6303 6303

CCP truncation used in the first stage, firt differences with instruments used in the second, β = .9. R measured in

$100/acre. Standard errors in parentheses. back
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Map of sample counties

Counties in my sample account account for 91% of US cropland.
On average, counties have ≈2900 fields.

back

Black and white version
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Map of sample counties

Counties in my sample account account for 91% of US cropland.
On average, counties have ≈2900 fields.

back
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Land use classifications
Land Cover Classifications

CDL Classification Mine land cover % CDL Classification Mine land cover %
Grassland/Herbaceous other 18.03 Barley crops 0.14
Shrub/Scrub other 11.98 Sunflower crops 0.11
Deciduous Forest other 11.81 Dry Beans crops 0.1
Evergreen Forest other 8.31 Sugarbeets crops 0.09
Corn crops 8.04 Oats crops 0.09
Soybeans crops 6.26 Durum Wheat crops 0.09
Pasture/Hay other 5.24 Canola crops 0.09
Developed, Open Space excluded 3.83 Peanuts crops 0.08
Woody Wetlands other 3.6 Potatoes crops 0.07
Winter Wheat crops 3.05 Sod/Grass Seed other 0.06
Pasture/Grass other 2.82 Almonds crops 0.05
Fallow/Idle Cropland other 2.04 Peas crops 0.04
Open Water excluded 1.77 Grapes crops 0.04
Non-alfalfa Hay other 1.67 Millet crops 0.04
Developed, Low Intensity excluded 1.53 Rye crops 0.04
Alfalfa other 1.33 Lentils crops 0.03
Cotton crops 1.31 Walnuts crops 0.03
Herbaceous Wetlands other 1.29 Apples crops 0.03
Spring Wheat crops 1.18 Pecans crops 0.02
Mixed Forest other 0.78 Dbl. Crop WinWht/Sorghum crops 0.02
Barren Land other 0.74 Dbl. Crop WinWht/Cotton crops 0.02
Developed, Medium Intensity excluded 0.56 Sweet Corn crops 0.02
Sorghum crops 0.44 Aquaculture excluded 0.02
Dbl. Crop WinWht/Soy crops 0.41 Sugarcane crops 0.02
Rice crops 0.24 Clover/Wildflowers other 0.02
Developed, High Intensity excluded 0.2

Percentages are for counties in my sample in 2011. Only land cover
classifications with at least 1000 sample observations are listed above.

back
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Yield forecasts
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Yield forecasts
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Corn Prices
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Posteriors
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Elasticity estimates with different models of returns

Acreage elasticity 0.4152 0.4668 0.3224 0.3026
(0.1610) (0.1642) (0.1664) (0.1579)

Caloric Elasticity 0.4425 0.4983 0.3420 0.3205
(0.1724) (0.1759) (0.1757) (0.1669)

Price forecasts use Planting season futures Futures from prev. fall

Costs per acre Proportional Flat within Proporitional Flat within
to yields region to yields region

Long-run elasticities for models with two unobservable types and two periods of state
dependence. CCP truncation was used in the first stage, first differences with
instruments were used in the second, and β = .9. Standard errors in parentheses.

back

56 / 43



Feb-March CBOT Futures Price Correlations, 1997-2011
corn soybeans wheat oats

corn 1.0000
soybeans 0.9787 1.0000
wheat 0.9600 0.9687 1.0000
oats 0.9750 0.9752 0.9812 1.0000
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